These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 19604760)
1. Postnatal ontogenesis of potentials elicited in the cerebral cortex by afferent stimulation. Verley R; Axelrad H Neurosci Lett; 1975 Aug; 1(2):99-104. PubMed ID: 19604760 [TBL] [Abstract][Full Text] [Related]
2. Development of the evoked potentials in the thalamus and cerebral cortex after stimulation of the stellate ganglion afferents in kittens. Masliukov PM; Nozdrachev AD Auton Neurosci; 2001 Oct; 93(1-2):36-40. PubMed ID: 11695704 [TBL] [Abstract][Full Text] [Related]
3. Development of excitatory and inhibitory postsynaptic potentials in the rat neocortex. Sutor B; Luhmann HJ Perspect Dev Neurobiol; 1995; 2(4):409-19. PubMed ID: 7757410 [TBL] [Abstract][Full Text] [Related]
4. Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. Swadlow HA J Neurophysiol; 1995 Apr; 73(4):1584-99. PubMed ID: 7643169 [TBL] [Abstract][Full Text] [Related]
5. Expression of GABA transporters, GAT-1 and GAT-3, in the cerebral cortex and thalamus of the rat during postnatal development. Vitellaro-Zuccarello L; Calvaresi N; De Biasi S Cell Tissue Res; 2003 Sep; 313(3):245-57. PubMed ID: 12898208 [TBL] [Abstract][Full Text] [Related]
6. Thalamo-cortical systems regulating spindle bursts and recruiting responses. II. Effect of thalamic lesions. Velasco M; Skinner JE; Asaro KD; Lindsley DB Acta Neurol Latinoam; 1975; 21(1-4):31-9. PubMed ID: 138328 [TBL] [Abstract][Full Text] [Related]
7. Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. Gil Z; Amitai Y J Neurophysiol; 1996 Oct; 76(4):2547-54. PubMed ID: 8899626 [TBL] [Abstract][Full Text] [Related]
8. [Age-related dynamics of thalamic-cortical evoked potentials in the rabbit in the early period of life]. Shimko IA Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(5):946-53. PubMed ID: 3433938 [TBL] [Abstract][Full Text] [Related]
9. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons. Timofeev I; Steriade M J Neurophysiol; 1998 May; 79(5):2716-29. PubMed ID: 9582240 [TBL] [Abstract][Full Text] [Related]
10. Periaqueductal gray and cerebral cortex modulate responses of medial thalamic neurons to noxious stimulation. Andersen E Brain Res; 1986 Jun; 375(1):30-6. PubMed ID: 3719357 [TBL] [Abstract][Full Text] [Related]
11. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. Swadlow HA; Gusev AG J Neurophysiol; 2000 May; 83(5):2802-13. PubMed ID: 10805678 [TBL] [Abstract][Full Text] [Related]
12. [Electrophysiologic study of thalamo-cortical connections during early postnatal ontogeny in cats]. Vasil'eva LA; Shikhgasanova ISh Fiziol Zh SSSR Im I M Sechenova; 1980 Dec; 66(12):1765-71. PubMed ID: 7461176 [TBL] [Abstract][Full Text] [Related]
13. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. Timofeev I; Grenier F; Steriade M J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954 [TBL] [Abstract][Full Text] [Related]
14. [Relation of dorsal thalamus nuclei with the cerebral cortex and the periphery during ontogenesis]. Verley R J Physiol (Paris); 1967; 59(1):Suppl:525. PubMed ID: 5609113 [No Abstract] [Full Text] [Related]
15. [Thalamic somatosensory potentials after peripheral stimulation and cortical somatosensory potentials after electric stimulation of thalamic nuclei VOa and VOp (preliminary report)]. Mempel E; Tarnecki R; Kuciński L; Ligezińska B; Pawłowski G Neurol Neurochir Pol; 1984; 18(5):445-51. PubMed ID: 6527726 [TBL] [Abstract][Full Text] [Related]
16. The development of physiological responses of the piriform cortex in rats to stimulation of the lateral olfactory tract. Schwob JE; Haberly LB; Price JL J Comp Neurol; 1984 Feb; 223(2):223-37. PubMed ID: 6707249 [TBL] [Abstract][Full Text] [Related]
17. Callosal transfer of impulses originating from superficial and deep nerves of the cat forelimb. Caminiti R; Manzoni T; Michelini S; Spidalieri G Arch Ital Biol; 1976 Jun; 114(2):155-77. PubMed ID: 1020974 [TBL] [Abstract][Full Text] [Related]
18. Chondroitin sulfate proteoglycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways. Miller B; Sheppard AM; Bicknese AR; Pearlman AL J Comp Neurol; 1995 May; 355(4):615-28. PubMed ID: 7636035 [TBL] [Abstract][Full Text] [Related]
19. Nucleus Z, the medullary relay in the projection path to the cerebral cortex of group I muscle afferents from the cat's hind limb. Landgren S; Silfvenius H J Physiol; 1971 Nov; 218(3):551-71. PubMed ID: 4109115 [TBL] [Abstract][Full Text] [Related]
20. Thalamocortical relations in the brain of the frog, Their role in the genesis of epileptic electrographic phenomena. Servít Z; Strejcková A Physiol Bohemoslov; 1975; 24(4):315-24. PubMed ID: 125882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]