These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19604914)

  • 41. Three-dimensional structural organization of layer I of the human cerebral cortex: a Golgi study.
    Marín-Padilla M
    J Comp Neurol; 1990 Sep; 299(1):89-105. PubMed ID: 2212113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reallocation of Olfactory Cajal-Retzius Cells Shapes Neocortex Architecture.
    de Frutos CA; Bouvier G; Arai Y; Thion MS; Lokmane L; Keita M; Garcia-Dominguez M; Charnay P; Hirata T; Riethmacher D; Grove EA; Tissir F; Casado M; Pierani A; Garel S
    Neuron; 2016 Oct; 92(2):435-448. PubMed ID: 27693257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The time of origin of neurons in the hippocampal region of the rhesus monkey.
    Rakic P; Nowakowski RS
    J Comp Neurol; 1981 Feb; 196(1):99-128. PubMed ID: 7204668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat.
    Schlessinger AR; Cowan WM; Gottlieb DI
    J Comp Neurol; 1975 Jan; 159(2):149-75. PubMed ID: 1112911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of the entorhino-hippocampal pathway: a tracing study in vitro and in vivo.
    Deng JB; Yu DM; Li MS
    Neurosci Bull; 2006 Nov; 22(6):305-14. PubMed ID: 17690715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Neocortex in the human embryo and fetus. Electron microscopic and Golgi staining study].
    Larroche JC; Houcine O
    Reprod Nutr Dev (1980); 1982; 22(1B):163-70. PubMed ID: 6185995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale.
    Altman J; Bayer SA
    J Comp Neurol; 1990 Nov; 301(3):343-64. PubMed ID: 2262595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization.
    Alcántara S; Pozas E; Ibañez CF; Soriano E
    Cereb Cortex; 2006 Apr; 16(4):487-99. PubMed ID: 16000651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Identification of Cajal-Retzius cells during neocortical ontogenesis in mice with fluorescent carbocyanine].
    Derer P; Derer M
    C R Acad Sci III; 1991; 313(3):175-81. PubMed ID: 1913256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex.
    Miller MW
    Brain Res; 1985 Dec; 355(2):187-92. PubMed ID: 3910166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of neuropeptide Y (NPY) immunoreactive neurons in the rat occipital cortex: a combined immunohistochemical-autoradiographic study.
    Cavanagh ME; Parnavelas JG
    J Comp Neurol; 1990 Jul; 297(4):553-63. PubMed ID: 1974557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Retzius-Cajal or Cajal-Retzius cells?
    König N
    Neurosci Lett; 1978 Oct; 9(4):361-3. PubMed ID: 19605246
    [No Abstract]   [Full Text] [Related]  

  • 53. Historical first descriptions of Cajal-Retzius cells: from pioneer studies to current knowledge.
    Gil V; Nocentini S; Del Río JA
    Front Neuroanat; 2014; 8():32. PubMed ID: 24904301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex.
    Marx M; Feldmeyer D
    Cereb Cortex; 2013 Dec; 23(12):2803-17. PubMed ID: 22944531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity.
    Carey RG; Li B; DiCicco-Bloom E
    J Neurosci; 2002 Mar; 22(5):1583-91. PubMed ID: 11880488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of layer I neurons in the primate cerebral cortex.
    Zecevic N; Rakic P
    J Neurosci; 2001 Aug; 21(15):5607-19. PubMed ID: 11466432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse.
    Molnár Z; Adams R; Goffinet AM; Blakemore C
    J Neurosci; 1998 Aug; 18(15):5746-65. PubMed ID: 9671664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential survival of Cajal-Retzius cells in organotypic cultures of hippocampus and neocortex.
    Del Río JA; Heimrich B; Supèr H; Borrell V; Frotscher M; Soriano E
    J Neurosci; 1996 Nov; 16(21):6896-907. PubMed ID: 8824328
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties of horizontal cells transiently appearing in the rat dentate gyrus during ontogenesis.
    von Haebler D; Stabel J; Draguhn A; Heinemann U
    Exp Brain Res; 1993; 94(1):33-42. PubMed ID: 7687562
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The cerebral cortex of the reeler mouse embryo. An electron microscopic analysis.
    Goffinet AM
    Anat Embryol (Berl); 1980; 159(2):199-210. PubMed ID: 7447037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.