These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1960516)

  • 21. Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids.
    Weber JM; Brichon G; Zwingelstein G; McClelland G; Saucedo C; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1667-74. PubMed ID: 8708574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans.
    González-Alonso J; Calbet JA; Nielsen B
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):577-89. PubMed ID: 10523424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease.
    Schocke M; Esterhammer R; Greiner A
    Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbohydrate handling in exercising muscle of obese Zucker rats.
    Ardévol A; Adán C; Remesar X; Fernández-López JA; Alemany M
    Int J Obes Relat Metab Disord; 1997 Mar; 21(3):239-49. PubMed ID: 9080264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myoglobin function in exercising skeletal muscle.
    Cole RP
    Science; 1982 Apr; 216(4545):523-5. PubMed ID: 7071598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle.
    Holloway GP; Lally J; Nickerson JG; Alkhateeb H; Snook LA; Heigenhauser GJ; Calles-Escandon J; Glatz JF; Luiken JJ; Spriet LL; Bonen A
    J Physiol; 2007 Jul; 582(Pt 1):393-405. PubMed ID: 17478525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limits for oxygen and substrate transport in mammals.
    Hoppeler H; Weibel ER
    J Exp Biol; 1998 Apr; 201(Pt 8):1051-64. PubMed ID: 9510519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity.
    Tsao TS; Li J; Chang KS; Stenbit AE; Galuska D; Anderson JE; Zierath JR; McCarter RJ; Charron MJ
    FASEB J; 2001 Apr; 15(6):958-69. PubMed ID: 11292656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does myoglobin contribute significantly to diffusion of oxygen in red skeletal muscle?
    Covell DG; Jacquez JA
    Am J Physiol; 1987 Feb; 252(2 Pt 2):R341-7. PubMed ID: 3812771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers.
    Glancy B; Hsu LY; Dao L; Bakalar M; French S; Chess DJ; Taylor JL; Picard M; Aponte A; Daniels MP; Esfahani S; Cushman S; Balaban RS
    Microcirculation; 2014 Feb; 21(2):131-47. PubMed ID: 25279425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 32. Muscle respiration during exercise.
    Bylund-Fellenius AC; Idström JP; Holm S
    Am Rev Respir Dis; 1984 Feb; 129(2 Pt 2):S10-2. PubMed ID: 6696335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of the oxygen and substrate pathways. VII. Different structural limits for oxygen and substrate supply to muscle mitochondria.
    Weibel ER; Taylor CR; Weber JM; Vock R; Roberts TJ; Hoppeler H
    J Exp Biol; 1996 Aug; 199(Pt 8):1699-709. PubMed ID: 8708577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscle glucose metabolism during exercise.
    Sahlin K
    Ann Med; 1990 Jun; 22(3):85-9. PubMed ID: 2393546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of physical activity in oxidative and anaerobic maximal exercise.
    Margaria R
    Int Z Angew Physiol; 1966 Apr; 22(2):115-24. PubMed ID: 5983817
    [No Abstract]   [Full Text] [Related]  

  • 37. Leg blood flow and muscle metabolism in occlusive arterial disease of the leg before and after reconstructive surgery.
    Pernow B; Saltin B; Wahren J; Cronestrand R; Ekestroöm S
    Clin Sci Mol Med; 1975 Sep; 49(3):265-75. PubMed ID: 1175342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle power and metabolism in maximal intermittent exercise.
    McCartney N; Spriet LL; Heigenhauser GJ; Kowalchuk JM; Sutton JR; Jones NL
    J Appl Physiol (1985); 1986 Apr; 60(4):1164-9. PubMed ID: 3700299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise in transgenic mice overexpressing GLUT4 glucose transporters: effects on substrate metabolism and glycogen regulation.
    Bao S; Garvey WT
    Metabolism; 1997 Nov; 46(11):1349-57. PubMed ID: 9361698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise.
    Brooks GA
    Fed Proc; 1986 Dec; 45(13):2924-9. PubMed ID: 3536591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.