These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19605313)

  • 1. Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain-machine interface controls.
    Song W; Ramakrishnan A; Udoekwere UI; Giszter SF
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2712-6. PubMed ID: 19605313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding bipedal locomotion from the rat sensorimotor cortex.
    Rigosa J; Panarese A; Dominici N; Friedli L; van den Brand R; Carpaneto J; DiGiovanna J; Courtine G; Micera S
    J Neural Eng; 2015 Oct; 12(5):056014. PubMed ID: 26331532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.
    Alam M; Chen X; Zhang Z; Li Y; He J
    PLoS One; 2014; 9(8):e103764. PubMed ID: 25084446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to a cortex-controlled robot attached at the pelvis and engaged during locomotion in rats.
    Song W; Giszter SF
    J Neurosci; 2011 Feb; 31(8):3110-28. PubMed ID: 21414932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding position, velocity, or goal: does it matter for brain-machine interfaces?
    Marathe AR; Taylor DM
    J Neural Eng; 2011 Apr; 8(2):025016. PubMed ID: 21436529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS; Giszter SF
    J Neurosci; 2015 May; 35(18):7174-89. PubMed ID: 25948267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding neural activity to predict rat locomotion using intracortical and epidural arrays.
    Barroso FO; Yoder B; Tentler D; Wallner JJ; Kinkhabwala AA; Jantz MK; Flint RD; Tostado PM; Pei E; Satish ADR; Brodnick SK; Suminski AJ; Williams JC; Miller LE; Tresch MC
    J Neural Eng; 2019 Jun; 16(3):036005. PubMed ID: 30754031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time decoding of nonstationary neural activity in motor cortex.
    Wu W; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):213-22. PubMed ID: 18586600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of locomotion speed and directions changes to control a vehicle using neural signals from the motor cortex of rat.
    Fukayama O; Taniguchi N; Suzuki T; Mabuchi K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1138-41. PubMed ID: 17946876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
    DiGiovanna J; Dominici N; Friedli L; Rigosa J; Duis S; Kreider J; Beauparlant J; van den Brand R; Schieppati M; Micera S; Courtine G
    J Neurosci; 2016 Oct; 36(40):10440-10455. PubMed ID: 27707977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trunk sensorimotor cortex is essential for autonomous weight-supported locomotion in adult rats spinalized as P1/P2 neonates.
    Giszter S; Davies MR; Ramakrishnan A; Udoekwere UI; Kargo WJ
    J Neurophysiol; 2008 Aug; 100(2):839-51. PubMed ID: 18509082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
    Suminski AJ; Willett FR; Fagg AH; Bodenhamer M; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5802-6. PubMed ID: 22255659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical representation of ipsilateral arm movements in monkey and man.
    Ganguly K; Secundo L; Ranade G; Orsborn A; Chang EF; Dimitrov DF; Wallis JD; Barbaro NM; Knight RT; Carmena JM
    J Neurosci; 2009 Oct; 29(41):12948-56. PubMed ID: 19828809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.
    Gupta R; Ashe J
    IEEE Trans Neural Syst Rehabil Eng; 2009 Jun; 17(3):254-62. PubMed ID: 19497832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support.
    Giszter SF; Kargo WJ; Davies M; Shibayama M
    J Neurophysiol; 1998 Dec; 80(6):3021-30. PubMed ID: 9862903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding hindlimb movement for a brain machine interface after a complete spinal transection.
    Manohar A; Flint RD; Knudsen E; Moxon KA
    PLoS One; 2012; 7(12):e52173. PubMed ID: 23300606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task.
    Francis JT; Chapin JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.
    Seong HY; Cho JY; Choi BS; Min JK; Kim YH; Roh SW; Kim JH; Jeon SR
    J Korean Med Sci; 2014 Apr; 29(4):587-92. PubMed ID: 24753709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved linear BMI systems via population averaging.
    DiGiovanna J; Sanchez JC; Principe JC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1608-11. PubMed ID: 17946469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic analysis of cat hindlimb stepping.
    Shen L; Poppele RE
    J Neurophysiol; 1995 Dec; 74(6):2266-80. PubMed ID: 8747190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.