These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 19605421)

  • 1. Supervised prediction of drug-target interactions using bipartite local models.
    Bleakley K; Yamanishi Y
    Bioinformatics; 2009 Sep; 25(18):2397-403. PubMed ID: 19605421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework.
    Yamanishi Y; Kotera M; Kanehisa M; Goto S
    Bioinformatics; 2010 Jun; 26(12):i246-54. PubMed ID: 20529913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces.
    Yamanishi Y; Araki M; Gutteridge A; Honda W; Kanehisa M
    Bioinformatics; 2008 Jul; 24(13):i232-40. PubMed ID: 18586719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SELF-BLM: Prediction of drug-target interactions via self-training SVM.
    Keum J; Nam H
    PLoS One; 2017; 12(2):e0171839. PubMed ID: 28192537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-target interaction networks based on functional groups and biological features.
    He Z; Zhang J; Shi XH; Hu LL; Kong X; Cai YD; Chou KC
    PLoS One; 2010 Mar; 5(3):e9603. PubMed ID: 20300175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization.
    Gönen M
    Bioinformatics; 2012 Sep; 28(18):2304-10. PubMed ID: 22730431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures.
    Cao DS; Liu S; Xu QS; Lu HM; Huang JH; Hu QN; Liang YZ
    Anal Chim Acta; 2012 Nov; 752():1-10. PubMed ID: 23101647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-target interaction prediction by learning from local information and neighbors.
    Mei JP; Kwoh CK; Yang P; Li XL; Zheng J
    Bioinformatics; 2013 Jan; 29(2):238-45. PubMed ID: 23162055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using feature selection technique for drug-target interaction networks prediction.
    Yu W; Jiang Z; Wang J; Tao R
    Curr Med Chem; 2011; 18(36):5687-93. PubMed ID: 22172073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-supervised method for drug-target interaction prediction with consistency in networks.
    Chen H; Zhang Z
    PLoS One; 2013; 8(5):e62975. PubMed ID: 23667553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kernel-based data fusion improves the drug-protein interaction prediction.
    Wang YC; Zhang CH; Deng NY; Wang Y
    Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization.
    Ezzat A; Zhao P; Wu M; Li XL; Kwoh CK
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):646-656. PubMed ID: 26890921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prediction of network drug target based on improved model of bipartite graph valuation].
    Liu X; Lu P; Zuo X; Chen J; Yang H; Yang Y; Gao Y
    Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(2):125-9. PubMed ID: 22737836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-target interaction prediction via class imbalance-aware ensemble learning.
    Ezzat A; Wu M; Li XL; Kwoh CK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers.
    Tabei Y; Pauwels E; Stoven V; Takemoto K; Yamanishi Y
    Bioinformatics; 2012 Sep; 28(18):i487-i494. PubMed ID: 22962471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.
    Liu Y; Wu M; Miao C; Zhao P; Li XL
    PLoS Comput Biol; 2016 Feb; 12(2):e1004760. PubMed ID: 26872142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Convolutional Neural Network System to Discriminate Drug-Target Interactions.
    Hu S; Xia D; Su B; Chen P; Wang B; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1315-1324. PubMed ID: 31514149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization.
    Mongia A; Majumdar A
    PLoS One; 2020; 15(1):e0226484. PubMed ID: 31945078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.