BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19605609)

  • 1. Contribution of hindpaw cutaneous inputs to the control of lateral stability during walking in the cat.
    Bolton DA; Misiaszek JE
    J Neurophysiol; 2009 Sep; 102(3):1711-24. PubMed ID: 19605609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3625-39. PubMed ID: 12944536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE
    J Neurophysiol; 2006 Oct; 96(4):1816-28. PubMed ID: 16823027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2006 Dec; 96(6):3096-103. PubMed ID: 17005610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.
    Wada N; Akatani J; Miyajima N; Shimojo K; Kanda K
    Brain Res; 2006 May; 1090(1):99-109. PubMed ID: 16682013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of cutaneous inputs from the hindpaw to the control of locomotion in rats.
    Varejão AS; Filipe VM
    Behav Brain Res; 2007 Jan; 176(2):193-201. PubMed ID: 17084913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of cutaneous stumble correction when tripping is part of the locomotor environment.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2008 Jun; 99(6):2789-97. PubMed ID: 18417633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for hip position in initiating the swing-to-stance transition in walking cats.
    McVea DA; Donelan JM; Tachibana A; Pearson KG
    J Neurophysiol; 2005 Nov; 94(5):3497-508. PubMed ID: 16093331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-functionality of the cat medical gastrocnemius during locomotion.
    Kaya M; Jinha A; Leonard TR; Herzog W
    J Biomech; 2005 Jun; 38(6):1291-301. PubMed ID: 15863114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural instability in cerebellar ataxia: correlations of knee, arm and trunk movements to center of mass velocity.
    Küng UM; Horlings CG; Honegger F; Kremer HP; Bloem BR; van De Warrenburg BP; Allum JH
    Neuroscience; 2009 Mar; 159(1):390-404. PubMed ID: 19136042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking.
    Haridas C; Zehr EP; Misiaszek JE
    Brain Res; 2005 Nov; 1062(1-2):48-62. PubMed ID: 16248988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory balance reactions during forward and backward walking on a treadmill.
    Bolton DA; Misiaszek JE
    Gait Posture; 2012 Apr; 35(4):681-4. PubMed ID: 22225851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in corticospinal efficacy contribute to the locomotor plasticity observed after unilateral cutaneous denervation of the hindpaw in the cat.
    Bretzner F; Drew T
    J Neurophysiol; 2005 Oct; 94(4):2911-27. PubMed ID: 16014797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pontomedullary reticular formation contributes to the compensatory postural responses observed following removal of the support surface in the standing cat.
    Stapley PJ; Drew T
    J Neurophysiol; 2009 Mar; 101(3):1334-50. PubMed ID: 19118108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of cutaneous reflex compensation during locomotion after nerve section in the cat.
    Bernard G; Bouyer L; Provencher J; Rossignol S
    J Neurophysiol; 2007 Jun; 97(6):4173-85. PubMed ID: 17392421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle reflexes and synergies triggered by an unexpected support surface height during walking.
    van der Linden MH; Marigold DS; Gabreëls FJ; Duysens J
    J Neurophysiol; 2007 May; 97(5):3639-50. PubMed ID: 17392408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrective postural responses evoked by completely unexpected loss of ground support during human walking.
    Shinya M; Fujii S; Oda S
    Gait Posture; 2009 Apr; 29(3):483-7. PubMed ID: 19128973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force regulation of ankle extensor muscle activity in freely walking cats.
    Donelan JM; McVea DA; Pearson KG
    J Neurophysiol; 2009 Jan; 101(1):360-71. PubMed ID: 19019974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.