BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 19606288)

  • 1. Biological implications of polydimethylsiloxane-based microfluidic cell culture.
    Regehr KJ; Domenech M; Koepsel JT; Carver KC; Ellison-Zelski SJ; Murphy WL; Schuler LA; Alarid ET; Beebe DJ
    Lab Chip; 2009 Aug; 9(15):2132-9. PubMed ID: 19606288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion dependent cell behavior in microenvironments.
    Yu H; Meyvantsson I; Shkel IA; Beebe DJ
    Lab Chip; 2005 Oct; 5(10):1089-95. PubMed ID: 16175265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications.
    Gomez-Sjoberg R; Leyrat AA; Houseman BT; Shokat K; Quake SR
    Anal Chem; 2010 Nov; 82(21):8954-60. PubMed ID: 20936785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leakage-free bonding of porous membranes into layered microfluidic array systems.
    Chueh BH; Huh D; Kyrtsos CR; Houssin T; Futai N; Takayama S
    Anal Chem; 2007 May; 79(9):3504-8. PubMed ID: 17388566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
    Markov DA; Lillie EM; Garbett SP; McCawley LJ
    Biomed Microdevices; 2014 Feb; 16(1):91-6. PubMed ID: 24065585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air-liquid interface.
    Bose N; Das T; Chakraborty D; Maiti TK; Chakraborty S
    Lab Chip; 2012 Jan; 12(1):69-73. PubMed ID: 22076598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices.
    Heo YS; Cabrera LM; Song JW; Futai N; Tung YC; Smith GD; Takayama S
    Anal Chem; 2007 Feb; 79(3):1126-34. PubMed ID: 17263345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.
    Futrega K; Yu J; Jones JW; Kane MA; Lott WB; Atkinson K; Doran MR
    Lab Chip; 2016 Apr; 16(8):1473-83. PubMed ID: 27008339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic devices for culturing primary mammalian neurons at low densities.
    Millet LJ; Stewart ME; Sweedler JV; Nuzzo RG; Gillette MU
    Lab Chip; 2007 Aug; 7(8):987-94. PubMed ID: 17653340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-Teflon microfluidic chips.
    Ren K; Dai W; Zhou J; Su J; Wu H
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8162-6. PubMed ID: 21536918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.