These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19606289)

  • 1. A conventional route to scalable morphology-controlled regular structures and their superhydrophobic/hydrophilic properties for biochips application.
    Ren HX; Chen X; Huang XJ; Im M; Kim DH; Lee JH; Yoon JB; Gu N; Liu JH; Choi YK
    Lab Chip; 2009 Aug; 9(15):2140-4. PubMed ID: 19606289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dividable membrane with multi-reaction wells for microarray biochips.
    Chang YJ; Hu CY; Yin LT; Chang CH; Su HJ
    J Biosci Bioeng; 2008 Jul; 106(1):59-64. PubMed ID: 18691532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification for PDMS-based microfluidic devices.
    Zhou J; Khodakov DA; Ellis AV; Voelcker NH
    Electrophoresis; 2012 Jan; 33(1):89-104. PubMed ID: 22128067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addressable microfluidic polymer chip for DNA-directed immobilization of oligonucleotide-tagged compounds.
    Schröder H; Hoffmann L; Müller J; Alhorn P; Fleger M; Neyer A; Niemeyer CM
    Small; 2009 Jul; 5(13):1547-52. PubMed ID: 19326353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrowetting on a polymer microlens array.
    Im M; Kim DH; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Jul; 26(14):12443-7. PubMed ID: 20465273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of chemistry and topology effects on superhydrophobic CF(4)-plasma-treated poly(dimethylsiloxane) (PDMS).
    Manca M; Cortese B; Viola I; Arico AS; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(5):1833-43. PubMed ID: 18193908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels.
    Ebara M; Hoffman JM; Hoffman AS; Stayton PS
    Lab Chip; 2006 Jul; 6(7):843-8. PubMed ID: 16804587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Macromolecules to PDMS transfer" as a general route for PDMS biochips.
    Heyries KA; Mandon CA; Ceriotti L; Ponti J; Colpo P; Blum LJ; Marquette CA
    Biosens Bioelectron; 2009 Jan; 24(5):1146-52. PubMed ID: 18676139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CF4 plasma treatment of poly(dimethylsiloxane): effect of fillers and its application to high-aspect-ratio UV embossing.
    Yan YH; Chan-Park MB; Yue CY
    Langmuir; 2005 Sep; 21(19):8905-12. PubMed ID: 16142977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.
    Yong J; Chen F; Yang Q; Zhang D; Bian H; Du G; Si J; Meng X; Hou X
    Langmuir; 2013 Mar; 29(10):3274-9. PubMed ID: 23391207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies.
    Skolimowski M; Nielsen MW; Emnéus J; Molin S; Taboryski R; Sternberg C; Dufva M; Geschke O
    Lab Chip; 2010 Aug; 10(16):2162-9. PubMed ID: 20571689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips.
    Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R
    Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of PDMS by gradient-induced migration of embedded Pluronic.
    Wu Z; Hjort K
    Lab Chip; 2009 Jun; 9(11):1500-3. PubMed ID: 19458853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.