These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19606297)

  • 1. A theoretical and experimental study of the electrophoretic extraction of ions from a pressure driven flow in a microfluidic device.
    Reschke BR; Luo H; Schiffbauer J; Edwards BF; Timperman AT
    Lab Chip; 2009 Aug; 9(15):2203-11. PubMed ID: 19606297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous separation and detection of cations and anions on a microfluidic device with suppressed electroosmotic flow and a single injection point.
    Reschke BR; Schiffbauer J; Edwards BF; Timperman AT
    Analyst; 2010 Jun; 135(6):1351-9. PubMed ID: 20498885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient elution moving boundary electrophoresis for high-throughput multiplexed microfluidic devices.
    Shackman JG; Munson MS; Ross D
    Anal Chem; 2007 Jan; 79(2):565-71. PubMed ID: 17222021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel.
    Fleming KK; Longmire EK; Hubel A
    J Biomech Eng; 2007 Oct; 129(5):703-11. PubMed ID: 17887896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic particle sorter employing flow splitting and recombining.
    Yamada M; Seki M
    Anal Chem; 2006 Feb; 78(4):1357-62. PubMed ID: 16478134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-leakage sample plug injection scheme for crossform microfluidic capillary electrophoresis devices incorporating a restricted cross-channel intersection.
    Chang CL; Hou HH; Fu LM; Tsai CH
    Electrophoresis; 2008 Aug; 29(15):3135-44. PubMed ID: 18600833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recirculation of nanoliter volumes within microfluidic channels.
    Lammertink RG; Schlautmann S; Besselink GA; Schasfoort RB
    Anal Chem; 2004 Jun; 76(11):3018-22. PubMed ID: 15167777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of a supported lipid bilayer under external shear forces.
    Jönsson P; Beech JP; Tegenfeldt JO; Höök F
    Langmuir; 2009 Jun; 25(11):6279-86. PubMed ID: 19408897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ and on-line monitoring of hydrodynamic flow profiles in microfluidic channels based on microelectrochemistry: optimization of channel geometrical parameters for best performance of flow profile reconstruction.
    Amatore C; Klymenko OV; Oleinick A; Svir I
    Chemphyschem; 2007 Aug; 8(12):1870-4. PubMed ID: 17663494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.
    Amatore C; Oleinick A; Klymenko OV; Svir I
    Chemphyschem; 2005 Aug; 6(8):1581-9. PubMed ID: 16082662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: optimization of electrode locations.
    Amatore C; Klymenko OV; Svir I
    Chemphyschem; 2006 Feb; 7(2):482-7. PubMed ID: 16463337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiometric investigation of protonation reactions at aqueous-aqueous boundaries within a dual-stream microfluidic structure.
    Strutwolf J; Collins CJ; Adamiak W; Arrigan DW
    Langmuir; 2010 Dec; 26(23):18526-33. PubMed ID: 21067197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated micro-solid phase extraction device involving integrated \high-pressure microvalves for genetic sample preparation.
    Han SI; Han KH; Frazier AB; Ferrance JP; Landers JP
    Biomed Microdevices; 2009 Aug; 11(4):935-42. PubMed ID: 19399625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of pressure-driven air bubble elimination in a microfluidic device.
    Kang JH; Kim YC; Park JK
    Lab Chip; 2008 Jan; 8(1):176-8. PubMed ID: 18094777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the condition for differential electrophoretic transport at a channel entrance.
    Pacheco JR; Chen KP; Hayes MA
    Electrophoresis; 2007 Apr; 28(7):1027-35. PubMed ID: 17311244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of electrokinetic gating valve in microfluidic channels.
    Zhang G; Du W; Liu BF; Hisamoto H; Terabe S
    Anal Chim Acta; 2007 Feb; 584(1):129-35. PubMed ID: 17386595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels.
    Khirevich S; Höltzel A; Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Lab Chip; 2008 Nov; 8(11):1801-8. PubMed ID: 18941678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.