These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19606302)

  • 1. Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process.
    Lee S; Kang JH; Lee SJ; Hwang W
    Lab Chip; 2009 Aug; 9(15):2234-7. PubMed ID: 19606302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.
    Xiu Y; Liu Y; Hess DW; Wong CP
    Nanotechnology; 2010 Apr; 21(15):155705. PubMed ID: 20332558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning.
    Bhushan B; Koch K; Jung YC
    Ultramicroscopy; 2009 Jul; 109(8):1029-34. PubMed ID: 19345499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force.
    Li Y; Zheng M; Ma L; Zhong M; Shen W
    Inorg Chem; 2008 Apr; 47(8):3140-3. PubMed ID: 18318487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces.
    Qi D; Lu N; Xu H; Yang B; Huang C; Xu M; Gao L; Wang Z; Chi L
    Langmuir; 2009 Jul; 25(14):7769-72. PubMed ID: 19537739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers.
    Sheng X; Zhang J
    Langmuir; 2009 Jun; 25(12):6916-22. PubMed ID: 19326870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls.
    Lee C; Kim CJ
    Langmuir; 2009 Nov; 25(21):12812-8. PubMed ID: 19610627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes.
    Pan Q; Wang M
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):420-3. PubMed ID: 20353232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.
    Manca M; Cannavale A; De Marco L; Aricò AS; Cingolani R; Gigli G
    Langmuir; 2009 Jun; 25(11):6357-62. PubMed ID: 19466786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.
    Choi CH; Kim CJ
    Langmuir; 2009 Jul; 25(13):7561-7. PubMed ID: 19518098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles.
    Yao T; Wang C; Lin Q; Li X; Chen X; Wu J; Zhang J; Yu K; Yang B
    Nanotechnology; 2009 Feb; 20(6):065304. PubMed ID: 19417380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.
    Balu B; Breedveld V; Hess DW
    Langmuir; 2008 May; 24(9):4785-90. PubMed ID: 18315020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces.
    Li XM; Reinhoudt D; Crego-Calama M
    Chem Soc Rev; 2007 Aug; 36(8):1350-68. PubMed ID: 17619692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
    Cheng M; Zhang S; Dong H; Han S; Wei H; Shi F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4275-82. PubMed ID: 25644454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures.
    Ghicov A; Schmuki P
    Chem Commun (Camb); 2009 May; (20):2791-808. PubMed ID: 19436878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films.
    Lai Y; Lin C; Huang J; Zhuang H; Sun L; Nguyen T
    Langmuir; 2008 Apr; 24(8):3867-73. PubMed ID: 18312005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.
    Cui Z; Yin L; Wang Q; Ding J; Chen Q
    J Colloid Interface Sci; 2009 Sep; 337(2):531-7. PubMed ID: 19552913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer.
    Zhang Y; Zhang Z; Yang J; Yue Y; Zhang H
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field.
    Liu Y; Guo Y; Zhang X; Gao G; Shi C; Huang G; Li P; Kang Q; Huang X; Wu G
    Nano Res; 2022; 15(5):4732-4738. PubMed ID: 35574261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.
    Kim A; Lee C; Kim H; Kim J
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7206-13. PubMed ID: 25782028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.