These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 19606304)

  • 1. Microfluidic enrichment of a target cell type from a heterogenous suspension by adhesion-based negative selection.
    Green JV; Murthy SK
    Lab Chip; 2009 Aug; 9(15):2245-8. PubMed ID: 19606304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow.
    Plouffe BD; Njoka DN; Harris J; Liao J; Horick NK; Radisic M; Murthy SK
    Langmuir; 2007 Apr; 23(9):5050-5. PubMed ID: 17373836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic depletion of endothelial cells, smooth muscle cells, and fibroblasts from heterogeneous suspensions.
    Plouffe BD; Radisic M; Murthy SK
    Lab Chip; 2008 Mar; 8(3):462-72. PubMed ID: 18305866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor expression changes as a basis for endothelial cell identification using microfluidic channels.
    Vickers DA; Murthy SK
    Lab Chip; 2010 Sep; 10(18):2380-6. PubMed ID: 20714500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels.
    Young EW; Wheeler AR; Simmons CA
    Lab Chip; 2007 Dec; 7(12):1759-66. PubMed ID: 18030398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A; Yeh J; Eng G; Karp J; Kaji H; Borenstein J; Farokhzad OC; Langer R
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. nDEP microwells for single-cell patterning in physiological media.
    Mittal N; Rosenthal A; Voldman J
    Lab Chip; 2007 Sep; 7(9):1146-53. PubMed ID: 17713613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of single-cell adhesion strength using a microfluidic assay.
    Christ KV; Williamson KB; Masters KS; Turner KT
    Biomed Microdevices; 2010 Jun; 12(3):443-55. PubMed ID: 20213215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes.
    Sin A; Murthy SK; Revzin A; Tompkins RG; Toner M
    Biotechnol Bioeng; 2005 Sep; 91(7):816-26. PubMed ID: 16037988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic shear devices for quantitative analysis of cell adhesion.
    Lu H; Koo LY; Wang WM; Lauffenburger DA; Griffith LG; Jensen KF
    Anal Chem; 2004 Sep; 76(18):5257-64. PubMed ID: 15362881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices for size-dependent separation of liver cells.
    Yamada M; Kano K; Tsuda Y; Kobayashi J; Yamato M; Seki M; Okano T
    Biomed Microdevices; 2007 Oct; 9(5):637-45. PubMed ID: 17530413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.
    Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY
    Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications.
    Lincoln B; Schinkinger S; Travis K; Wottawah F; Ebert S; Sauer F; Guck J
    Biomed Microdevices; 2007 Oct; 9(5):703-10. PubMed ID: 17505883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a clinical grade CD34-mediated method for the enrichment of microvascular endothelial cells from fat tissue.
    Arts CH; de Groot P; Heijnen-Snyder GJ; Blankensteijn JD; Eikelboom BC; Slaper-Cortenbach IC
    Cytotherapy; 2004; 6(1):30-42. PubMed ID: 14985165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers.
    Estes MD; Do J; Ahn CH
    Biomed Microdevices; 2009 Apr; 11(2):509-15. PubMed ID: 19082734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of tumor cells using size and deformation.
    Mohamed H; Murray M; Turner JN; Caggana M
    J Chromatogr A; 2009 Nov; 1216(47):8289-95. PubMed ID: 19497576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.
    Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS
    Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.