These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19606820)

  • 1. Using small molecules to dissect mechanisms of microbial pathogenesis.
    Puri AW; Bogyo M
    ACS Chem Biol; 2009 Aug; 4(8):603-16. PubMed ID: 19606820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-phase biological assays for drug discovery.
    Forsberg EM; Sicard C; Brennan JD
    Annu Rev Anal Chem (Palo Alto Calif); 2014; 7():337-59. PubMed ID: 25000820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the undruggable proteome: the small molecules of my dreams.
    Crews CM
    Chem Biol; 2010 Jun; 17(6):551-5. PubMed ID: 20609404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Platform to Enable the Pharmacological Profiling of Small Molecules in Gel-Based Electrophoretic Mobility Shift Assays.
    Foley TL; Dorjsuren D; Dexheimer TS; Burkart MD; Wight WC; Simeonov A
    J Biomol Screen; 2016 Dec; 21(10):1125-1131. PubMed ID: 27269812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput screen to identify novel small molecule inhibitors of the Werner Syndrome Helicase-Nuclease (WRN).
    Sommers JA; Kulikowicz T; Croteau DL; Dexheimer T; Dorjsuren D; Jadhav A; Maloney DJ; Simeonov A; Bohr VA; Brosh RM
    PLoS One; 2019; 14(1):e0210525. PubMed ID: 30625228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA.
    Wicks SL; Hargrove AE
    Methods; 2019 Sep; 167():3-14. PubMed ID: 31051253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing bacterial pathogenesis with genetics, genomics, and chemical biology: past, present, and future approaches.
    Gomez JE; Clatworthy A; Hung DT
    Crit Rev Biochem Mol Biol; 2011 Feb; 46(1):41-66. PubMed ID: 21250782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LC3-associated phagocytosis in microbial pathogenesis.
    Schille S; Crauwels P; Bohn R; Bagola K; Walther P; van Zandbergen G
    Int J Med Microbiol; 2018 Jan; 308(1):228-236. PubMed ID: 29169848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput screening technology and the small molecules modulating aging related signals.
    Mo C; Zhang W; Liu L; Wang L; Xiao H
    Comb Chem High Throughput Screen; 2012 Mar; 15(3):242-52. PubMed ID: 22221057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment screening using X-ray crystallography.
    Davies TG; Tickle IJ
    Top Curr Chem; 2012; 317():33-59. PubMed ID: 21678136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological profiling of small molecules.
    Ziegler S; Sievers S; Waldmann H
    Cell Chem Biol; 2021 Mar; 28(3):300-319. PubMed ID: 33740434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical genomics for studying parasite gene function and interaction.
    Li J; Yuan J; Cheng KC; Inglese J; Su XZ
    Trends Parasitol; 2013 Dec; 29(12):603-11. PubMed ID: 24215777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches.
    Cressina E; Chen L; Moulin M; Leeper FJ; Abell C; Smith AG
    Biochem Soc Trans; 2011 Apr; 39(2):652-7. PubMed ID: 21428956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review article: high-throughput affinity-based technologies for small-molecule drug discovery.
    Zhu Z; Cuozzo J
    J Biomol Screen; 2009 Dec; 14(10):1157-64. PubMed ID: 19822881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput approaches for screening and analysis of cell behaviors.
    Seo J; Shin JY; Leijten J; Jeon O; Camci-Unal G; Dikina AD; Brinegar K; Ghaemmaghami AM; Alsberg E; Khademhosseini A
    Biomaterials; 2018 Jan; 153():85-101. PubMed ID: 29079207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical genomics approaches in plant biology.
    Norambuena L; Raikhel NV; Hicks GR
    Methods Mol Biol; 2009; 553():345-54. PubMed ID: 19588115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of small-molecule microarrays by trans-cyclooctene tetrazine ligation and their application in the high-throughput screening of protein-protein interaction inhibitors of bromodomains.
    Zhang CJ; Tan CY; Ge J; Na Z; Chen GY; Uttamchandani M; Sun H; Yao SQ
    Angew Chem Int Ed Engl; 2013 Dec; 52(52):14060-4. PubMed ID: 24353229
    [No Abstract]   [Full Text] [Related]  

  • 18. Using chemical genomics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum.
    Worden N; Esteve VE; Domozych DS; Drakakaki G
    Methods Mol Biol; 2015; 1242():23-39. PubMed ID: 25408440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Phenotypic screens or one stone to kill two birds: discover the target and its pharmacological regulator].
    Prudent R; Soleilhac E; Barette C; Fauvarque MO; Lafanechère L
    Med Sci (Paris); 2013 Oct; 29(10):897-905. PubMed ID: 24148129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Small-Molecule Aggregation with High-Throughput Microplate Biophysical Methods.
    Allen SJ; Dower CM; Liu AX; Lumb KJ
    Curr Protoc Chem Biol; 2020 Mar; 12(1):e78. PubMed ID: 32150343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.