BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19607664)

  • 21. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V; Gomes JP
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species.
    Kaltenboeck B; Kousoulas KG; Storz J
    J Bacteriol; 1993 Jan; 175(2):487-502. PubMed ID: 8419295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis.
    Mueller KE; Wolf K; Fields KA
    mBio; 2016 Jan; 7(1):e01817-15. PubMed ID: 26787828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sequence of the groES and groEL genes from the mouse pneumonitis agent of Chlamydia trachomatis.
    Ho Y; Zhang YX
    Gene; 1994 Apr; 141(1):143-4. PubMed ID: 7909303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis.
    Akers JC; Tan M
    J Bacteriol; 2006 Jun; 188(12):4236-43. PubMed ID: 16740930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymorphisms in inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates.
    Almeida F; Borges V; Ferreira R; Borrego MJ; Gomes JP; Mota LJ
    J Bacteriol; 2012 Dec; 194(23):6574-85. PubMed ID: 23042990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Denaturing gradient gel electrophoresis analysis for the detection of point mutations in the Chlamydia trachomatis major outer-membrane protein gene.
    Sayada C; Denamur E; Grandchamp B; Orfila J; Elion J
    J Med Microbiol; 1995 Jul; 43(1):14-25. PubMed ID: 7608950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity.
    Claywell JE; Fisher DJ
    J Bacteriol; 2016 Jul; 198(13):1827-1836. PubMed ID: 27114464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlamydia trachomatis serovar differentiation by direct sequence analysis of the variable segment 4 region of the major outer membrane protein gene.
    Poole E; Lamont I
    Infect Immun; 1992 Mar; 60(3):1089-94. PubMed ID: 1541524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity of Chlamydia trachomatis major outer membrane protein genes.
    Stephens RS; Sanchez-Pescador R; Wagar EA; Inouye C; Urdea MS
    J Bacteriol; 1987 Sep; 169(9):3879-85. PubMed ID: 3040664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleotide sequence of DNA encoding the major outer membrane protein of Chlamydia trachomatis serovar L3.
    Fielder TJ; Peterson EM; de la Maza LM
    Gene; 1991 May; 101(1):159-60. PubMed ID: 2060793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis.
    Graham DE; Xu H; White RH
    J Biol Chem; 2002 Jun; 277(26):23500-7. PubMed ID: 11980912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleotide sequence variations within the lipopolysaccharide biosynthesis gene gseA (Kdo transferase) among the Chlamydia trachomatis serovars.
    Mamat U; Löbau S; Persson K; Brade H
    Microb Pathog; 1994 Aug; 17(2):87-97. PubMed ID: 7861960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Unusual Route for
    Macias-Orihuela Y; Cast T; Crawford I; Brandecker KJ; Thiaville JJ; Murzin AG; de Crécy-Lagard V; White RH; Allen KD
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967910
    [No Abstract]   [Full Text] [Related]  

  • 35. Sequence analysis of the major outer membrane protein gene of Chlamydia pneumoniae.
    Perez Melgosa M; Kuo CC; Campbell LA
    Infect Immun; 1991 Jun; 59(6):2195-9. PubMed ID: 1840574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the rnpB gene and RNase P RNA in the order Chlamydiales.
    Herrmann B; Pettersson B; Everett KD; Mikkelsen NE; Kirsebom LA
    Int J Syst Evol Microbiol; 2000 Jan; 50 Pt 1():149-158. PubMed ID: 10826799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome.
    Brunelle BW; Sensabaugh GF
    Infect Immun; 2006 Jan; 74(1):578-85. PubMed ID: 16369014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Population genomics of Chlamydia trachomatis: insights on drift, selection, recombination, and population structure.
    Joseph SJ; Didelot X; Rothschild J; de Vries HJ; Morré SA; Read TD; Dean D
    Mol Biol Evol; 2012 Dec; 29(12):3933-46. PubMed ID: 22891032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.