These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 19608336)
1. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media. Han S; Yue Q; Yue M; Gao B; Li Q; Yu H; Zhao Y; Qi Y J Hazard Mater; 2009 Nov; 171(1-3):809-14. PubMed ID: 19608336 [TBL] [Abstract][Full Text] [Related]
2. The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) during the restart period: effect of the C/N ratios and filter media. Yue Q; Han S; Yue M; Gao B; Li Q; Yu H; Zhao Y; Qi Y Bioresour Technol; 2009 Nov; 100(21):5016-20. PubMed ID: 19520569 [TBL] [Abstract][Full Text] [Related]
3. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF). Zhao Y; Yue Q; Li R; Yue M; Han S; Gao B; Li Q; Yu H Bioresour Technol; 2009 Nov; 100(21):4955-62. PubMed ID: 19540753 [TBL] [Abstract][Full Text] [Related]
4. Effect of sludge-fly ash ceramic particles (SFCP) on synthetic wastewater treatment in an A/O combined biological aerated filter. Han S; Yue Q; Yue M; Gao B; Zhao Y; Cheng W Bioresour Technol; 2009 Feb; 100(3):1149-55. PubMed ID: 18828988 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. Jedidi I; Saïdi S; Khemakhem S; Larbot A; Elloumi-Ammar N; Fourati A; Charfi A; Salah AB; Amar RB J Hazard Mater; 2009 Dec; 172(1):152-8. PubMed ID: 19699033 [TBL] [Abstract][Full Text] [Related]
7. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification. Kim TH; Nam YK; Park C; Lee M Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. Sumino T; Isaka K; Ikuta H; Saiki Y; Yokota T J Biosci Bioeng; 2006 Oct; 102(4):346-51. PubMed ID: 17116583 [TBL] [Abstract][Full Text] [Related]
9. Carbon and nitrogen removal from a wastewater of an industrial dairy laboratory with a coupled anaerobic filter-sequencing batch reactor system. Garrido JM; Omil F; Arrojo B; Méndez R; Lema JM Water Sci Technol; 2001; 43(3):249-56. PubMed ID: 11381913 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor. Oktem YA; Ince O; Sallis P; Donnelly T; Ince BK Bioresour Technol; 2008 Mar; 99(5):1089-96. PubMed ID: 17449241 [TBL] [Abstract][Full Text] [Related]
11. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water. Jing Z; Li YY; Cao S; Liu Y Bioresour Technol; 2012 Sep; 120():212-7. PubMed ID: 22820109 [TBL] [Abstract][Full Text] [Related]
12. Small sewage treatment system with an anaerobic-anoxic-aerobic combined biofilter. Park SM; Jun HB; Hong SP; Kwon JC Water Sci Technol; 2003; 48(11-12):213-20. PubMed ID: 14753539 [TBL] [Abstract][Full Text] [Related]
13. Humic acid adsorption on fly ash and its derived unburned carbon. Wang S; Zhu ZH J Colloid Interface Sci; 2007 Nov; 315(1):41-6. PubMed ID: 17628583 [TBL] [Abstract][Full Text] [Related]
14. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics. Yang Y; Inamori Y; Ojima H; Machii H; Shimizu Y Water Res; 2005 Dec; 39(20):4859-68. PubMed ID: 16316675 [TBL] [Abstract][Full Text] [Related]
15. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Ahmaruzzaman M Adv Colloid Interface Sci; 2011 Aug; 166(1-2):36-59. PubMed ID: 21669401 [TBL] [Abstract][Full Text] [Related]
16. SBR technology for high ammonium loading rates. Galí A; Dosta J; López-Palau S; Mata-Alvarez J Water Sci Technol; 2008; 58(2):467-72. PubMed ID: 18701802 [TBL] [Abstract][Full Text] [Related]
17. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor. Beliavski M; Meerovich I; Tarre S; Green M Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process. Zhang SH; Zheng P; Hua YM J Environ Sci (China); 2005; 17(6):1030-3. PubMed ID: 16465902 [TBL] [Abstract][Full Text] [Related]
19. Effect of media characteristics on performance of upflow aerobic biofilters. Srinikethan G; Shrihari S; Pradeepan VS J Environ Sci Eng; 2008 Jan; 50(1):75-82. PubMed ID: 19192931 [TBL] [Abstract][Full Text] [Related]
20. Removal of chromium from tannery industry effluents with (activated carbon and fly ash) adsorbents. Rao S; Lade HS; Kadam TA; Ramana TV; Krishnamacharyulu SK; Deshmukh S; Gyananath G J Environ Sci Eng; 2007 Oct; 49(4):255-8. PubMed ID: 18476371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]