BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 19608339)

  • 1. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor.
    Sahinkaya E; Yucesoy Z
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):989-97. PubMed ID: 20369260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor.
    Sampaio RM; Timmers RA; Xu Y; Keesman KJ; Lens PN
    J Hazard Mater; 2009 Jun; 165(1-3):256-65. PubMed ID: 19019537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater.
    Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD
    Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor.
    Veeken AH; Akoto L; Hulshoff Pol LW; Weijma J
    Water Res; 2003 Sep; 37(15):3709-17. PubMed ID: 12867339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of solution chemistry on particle characteristics during metal sulfide precipitation.
    Mokone TP; van Hille RP; Lewis AE
    J Colloid Interface Sci; 2010 Nov; 351(1):10-8. PubMed ID: 20705300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids.
    Alvarez MT; Crespo C; Mattiasson B
    Chemosphere; 2007 Jan; 66(9):1677-83. PubMed ID: 16979215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater.
    Sahinkaya E; Gungor M
    Bioresour Technol; 2010 Dec; 101(24):9508-14. PubMed ID: 20724148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology, mineralogy, and solid-liquid phase separation characteristics of Cu and Zn precipitates produced with biogenic sulfide.
    Villa-Gomez DK; van Hullebusch ED; Maestro R; Farges F; Nikitenko S; Kramer H; Gonzalez-Gil G; Lens PN
    Environ Sci Technol; 2014; 48(1):664-73. PubMed ID: 24164296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.
    Velasco A; Ramírez M; Volke-Sepúlveda T; González-Sánchez A; Revah S
    J Hazard Mater; 2008 Mar; 151(2-3):407-13. PubMed ID: 17640800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide.
    Fang D; Zhang R; Liu X; Zhou L
    J Hazard Mater; 2012 Jun; 219-220():119-26. PubMed ID: 22503217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.
    Castillo J; Pérez-López R; Caraballo MA; Nieto JM; Martins M; Costa MC; Olías M; Cerón JC; Tucoulou R
    Sci Total Environ; 2012 Apr; 423():176-84. PubMed ID: 22414495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.