BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 19608599)

  • 21. Elective affinities--bioinformatic analysis of proteomic mass spectrometry data.
    Li X; Pizarro A; Grosser T
    Arch Physiol Biochem; 2009 Dec; 115(5):311-9. PubMed ID: 19911947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.
    Tu C; Shen S; Sheng Q; Shyr Y; Qu J
    J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IPM: An integrated protein model for false discovery rate estimation and identification in high-throughput proteomics.
    Higdon R; Reiter L; Hather G; Haynes W; Kolker N; Stewart E; Bauman AT; Picotti P; Schmidt A; van Belle G; Aebersold R; Kolker E
    J Proteomics; 2011 Dec; 75(1):116-21. PubMed ID: 21718813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics.
    Nesvizhskii AI
    J Proteomics; 2010 Oct; 73(11):2092-123. PubMed ID: 20816881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.
    Park GW; Hwang H; Kim KH; Lee JY; Lee HK; Park JY; Ji ES; Park SR; Yates JR; Kwon KH; Park YM; Lee HJ; Paik YK; Kim JY; Yoo JS
    J Proteome Res; 2016 Nov; 15(11):4082-4090. PubMed ID: 27537616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potential cost of high-throughput proteomics.
    White FM
    Sci Signal; 2011 Feb; 4(160):pe8. PubMed ID: 21325204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional target decoy strategy for shotgun proteomics.
    Bern MW; Kil YJ
    J Proteome Res; 2011 Dec; 10(12):5296-301. PubMed ID: 22010998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing Protein Sequence Database Suitability Using
    Johnson RS; Searle BC; Nunn BL; Gilmore JM; Phillips M; Amemiya CT; Heck M; MacCoss MJ
    Mol Cell Proteomics; 2020 Jan; 19(1):198-208. PubMed ID: 31732549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    BMC Bioinformatics; 2007 Nov; 8():468. PubMed ID: 18053132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
    Tu C; Sheng Q; Li J; Ma D; Shen X; Wang X; Shyr Y; Yi Z; Qu J
    J Proteome Res; 2015 Nov; 14(11):4662-73. PubMed ID: 26390080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current algorithmic solutions for peptide-based proteomics data generation and identification.
    Hoopmann MR; Moritz RL
    Curr Opin Biotechnol; 2013 Feb; 24(1):31-8. PubMed ID: 23142544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utility of RNA-seq and GPMDB protein observation frequency for improving the sensitivity of protein identification by tandem MS.
    Shanmugam AK; Yocum AK; Nesvizhskii AI
    J Proteome Res; 2014 Sep; 13(9):4113-9. PubMed ID: 25026199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications.
    den Ridder M; Knibbe E; van den Brandeler W; Daran-Lapujade P; Pabst M
    J Proteomics; 2022 Jun; 261():104576. PubMed ID: 35351659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PepDistiller: A quality control tool to improve the sensitivity and accuracy of peptide identifications in shotgun proteomics.
    Li N; Wu S; Zhang C; Chang C; Zhang J; Ma J; Li L; Qian X; Xu P; Zhu Y; He F
    Proteomics; 2012 Jun; 12(11):1720-5. PubMed ID: 22623377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-supervised learning for peptide identification from shotgun proteomics datasets.
    Käll L; Canterbury JD; Weston J; Noble WS; MacCoss MJ
    Nat Methods; 2007 Nov; 4(11):923-5. PubMed ID: 17952086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0.
    The M; MacCoss MJ; Noble WS; Käll L
    J Am Soc Mass Spectrom; 2016 Nov; 27(11):1719-1727. PubMed ID: 27572102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pValid 2: A deep learning based validation method for peptide identification in shotgun proteomics with increased discriminating power.
    Zhou WJ; Wei ZH; He SM; Chi H
    J Proteomics; 2022 Jan; 251():104414. PubMed ID: 34737111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator.
    Wright JC; Collins MO; Yu L; Käll L; Brosch M; Choudhary JS
    Mol Cell Proteomics; 2012 Aug; 11(8):478-91. PubMed ID: 22493177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications.
    Reidegeld KA; Eisenacher M; Kohl M; Chamrad D; Körting G; Blüggel M; Meyer HE; Stephan C
    Proteomics; 2008 Mar; 8(6):1129-37. PubMed ID: 18338823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PTMiner: Localization and Quality Control of Protein Modifications Detected in an Open Search and Its Application to Comprehensive Post-translational Modification Characterization in Human Proteome.
    An Z; Zhai L; Ying W; Qian X; Gong F; Tan M; Fu Y
    Mol Cell Proteomics; 2019 Feb; 18(2):391-405. PubMed ID: 30420486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.