BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 19608599)

  • 41. False discovery rates of protein identifications: a strike against the two-peptide rule.
    Gupta N; Pevzner PA
    J Proteome Res; 2009 Sep; 8(9):4173-81. PubMed ID: 19627159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential for false positive identifications from large databases through tandem mass spectrometry.
    Cargile BJ; Bundy JL; Stephenson JL
    J Proteome Res; 2004; 3(5):1082-5. PubMed ID: 15473699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of error associated with false-positive rate determination for peptide identification in large-scale proteomics experiments using a combined reverse and forward peptide sequence database strategy.
    Huttlin EL; Hegeman AD; Harms AC; Sussman MR
    J Proteome Res; 2007 Jan; 6(1):392-8. PubMed ID: 17203984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective Leveraging of Targeted Search Spaces for Improving Peptide Identification in Tandem Mass Spectrometry Based Proteomics.
    Shanmugam AK; Nesvizhskii AI
    J Proteome Res; 2015 Dec; 14(12):5169-78. PubMed ID: 26569054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling.
    Choi H; Ghosh D; Nesvizhskii AI
    J Proteome Res; 2008 Jan; 7(1):286-92. PubMed ID: 18078310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets.
    Alcolea MP; Kleiner O; Cutillas PR
    J Proteome Res; 2009 Aug; 8(8):3808-15. PubMed ID: 19537829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomics-grade de novo sequencing approach.
    Savitski MM; Nielsen ML; Kjeldsen F; Zubarev RA
    J Proteome Res; 2005; 4(6):2348-54. PubMed ID: 16335984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer aided manual validation of mass spectrometry-based proteomic data.
    Curran TG; Bryson BD; Reigelhaupt M; Johnson H; White FM
    Methods; 2013 Jun; 61(3):219-26. PubMed ID: 23500044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein Inference.
    He Z; Huang T; Zhao C; Teng B
    Adv Exp Med Biol; 2016; 919():237-242. PubMed ID: 27975221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Submodular Generalized Matching for Peptide Identification in Tandem Mass Spectrometry.
    Bai W; Bilmes J; Noble WS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1168-1181. PubMed ID: 29993658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments.
    Mohammed Y; Domański D; Jackson AM; Smith DS; Deelder AM; Palmblad M; Borchers CH
    J Proteomics; 2014 Jun; 106():151-61. PubMed ID: 24769191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving the Protein Inference from Bottom-Up Proteomic Data Using Identifications from MS1 Spectra.
    Ivanov MV; Solovyeva EM; Bubis JA; Gorshkov MV
    J Am Soc Mass Spectrom; 2021 May; 32(5):1258-1262. PubMed ID: 33900766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.
    Perez-Riverol Y; Xu QW; Wang R; Uszkoreit J; Griss J; Sanchez A; Reisinger F; Csordas A; Ternent T; Del-Toro N; Dianes JA; Eisenacher M; Hermjakob H; Vizcaíno JA
    Mol Cell Proteomics; 2016 Jan; 15(1):305-17. PubMed ID: 26545397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning.
    Gessulat S; Schmidt T; Zolg DP; Samaras P; Schnatbaum K; Zerweck J; Knaute T; Rechenberger J; Delanghe B; Huhmer A; Reimer U; Ehrlich HC; Aiche S; Kuster B; Wilhelm M
    Nat Methods; 2019 Jun; 16(6):509-518. PubMed ID: 31133760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generic comparison of protein inference engines.
    Claassen M; Reiter L; Hengartner MO; Buhmann JM; Aebersold R
    Mol Cell Proteomics; 2012 Apr; 11(4):O110.007088. PubMed ID: 22057310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets.
    Deutsch EW; Shteynberg D; Lam H; Sun Z; Eng JK; Carapito C; von Haller PD; Tasman N; Mendoza L; Farrah T; Aebersold R
    Proteomics; 2010 Mar; 10(6):1190-5. PubMed ID: 20082347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A dynamic noise level algorithm for spectral screening of peptide MS/MS spectra.
    Xu H; Freitas MA
    BMC Bioinformatics; 2010 Aug; 11():436. PubMed ID: 20731867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates.
    Hart-Smith G; Yagoub D; Tay AP; Pickford R; Wilkins MR
    Mol Cell Proteomics; 2016 Mar; 15(3):989-1006. PubMed ID: 26699799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. STEM: a software tool for large-scale proteomic data analyses.
    Shinkawa T; Taoka M; Yamauchi Y; Ichimura T; Kaji H; Takahashi N; Isobe T
    J Proteome Res; 2005; 4(5):1826-31. PubMed ID: 16212438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides.
    Bogdanow B; Zauber H; Selbach M
    Mol Cell Proteomics; 2016 Aug; 15(8):2791-801. PubMed ID: 27215553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.