These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 196086)

  • 1. ATPase and phosphatase activities from human red cell membranes: I. The effects of N-ethylmaleimide.
    Richards DE; Rega AF; Garrahan PJ
    J Membr Biol; 1977 Jun; 35(2):113-24. PubMed ID: 196086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATPase and phosphatase activities from human red cell membranes: II. The effects of phospholipases on Ca2+-dependent enzymic activities.
    Richards DE; Vidal JC; Garrahan PJ; Rega AF
    J Membr Biol; 1977 Jun; 35(2):125-36. PubMed ID: 196087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATPase and phosphatase activities from human red cell membranes. III. Stimulation of K+-activated phosphatase by phospholipase C.
    Richards DE; Garrahan PJ; Rega AF
    J Membr Biol; 1977 Jun; 35(2):137-47. PubMed ID: 142159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation of phosphatase activity of the Ca2+-ATPase from human red cell membranes by calmodulin, ATP and partial proteolysis.
    Rossi JP; Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1986 Jun; 858(1):21-30. PubMed ID: 3011093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of magnesium in the (Ca2+ + Mg2+)-stimulated membrane ATPase of human red blood cells.
    Schatzmann HJ
    J Membr Biol; 1977 Jun; 35(2):149-58. PubMed ID: 142160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulphydryl groups of (Na+ + K+)-ATPase from rectal glands of Squalus acanthias. Detection of ligand-induced conformational changes.
    Esmann M
    Biochim Biophys Acta; 1982 May; 688(1):260-70. PubMed ID: 6284233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transport and adenosine triphosphatase activities of erythrocyte membranes in congenital spherocytosis.
    Johnsson R; Santaholma S; Saris NE
    Scand J Clin Lab Invest; 1978 Apr; 38(2):121-5. PubMed ID: 148726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Influence of detergents and inhibition of Na+,K+-ATPase and Mg2+ATPase on erythrocyte membrane SH-groups].
    Megalinskaia AP; Skobets EM; Lishko VK
    Ukr Biokhim Zh (1978); 1978; 50(2):222-5. PubMed ID: 149402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the sites for ATP of the Ca2+ -ATPase from human red cell membranes during Ca2+ -phosphatase activity.
    Caride AJ; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1982 Aug; 689(3):421-8. PubMed ID: 6289888
    [No Abstract]   [Full Text] [Related]  

  • 11. Membrane-bound enzymes of erythrocytes in human muscular dystrophy: (Na+ + K+-ATPase, Ca2+-ATPase, K+- and Ca2+-p-nitrophenylphosphatase.
    Ruitenbeek W
    J Neurol Sci; 1979 Mar; 41(1):71-80. PubMed ID: 220389
    [No Abstract]   [Full Text] [Related]  

  • 12. Vanadate inhibition of the Ca2+-ATPase from human red cell membranes.
    Barrabin H; Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1980 Aug; 600(3):796-804. PubMed ID: 6447514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of several ligands on the potassium-vanadate interaction in the inhibition of the (Na+ + K+)-ATPase and the Na+, K+ pump.
    Beaugé L; Berberian G
    Biochim Biophys Acta; 1983 Jan; 727(2):336-50. PubMed ID: 6301556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of Ca2+ on ATPase and phosphatase activities of erythrocyte membranes.
    Rega AF; Richards DE; Garrahan PJ
    Ann N Y Acad Sci; 1974; 242(0):317-23. PubMed ID: 4372927
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of hemolysate on calcium inhibition of the (Na+ + K+)-ATPase of human red blood cells.
    Yingst DR; Marcovitz MJ
    Biochem Biophys Res Commun; 1983 Mar; 111(3):970-9. PubMed ID: 6301494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excess magnesium converts red cell (sodium+potassium) ATPase to the potassium phosphatase.
    Flatman PW; Lew VL
    J Physiol; 1980 Oct; 307():1-8. PubMed ID: 6259330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on (Na+ +K+) activated ATPase. XLI. Effects of N-ethylmaleimide on overall and partial reactions.
    Schoot BM; Schoots AF; De Pont JJ; Schuurmans Stekhoven FM; Bonting SL
    Biochim Biophys Acta; 1977 Jul; 483(1):181-92. PubMed ID: 18194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two classes of site for ATP in the Ca2+-ATPase from human red cell membranes.
    Richards DE; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1978 Aug; 511(2):194-201. PubMed ID: 150288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of N-acetylimidazole on human erythrocyte ATPase activity. Evidence for a tyrosyl residue at the ATP binding site of the (Na+ plus K+)-dependent ATPase.
    Masiak SJ; D'angelo G
    Biochim Biophys Acta; 1975 Feb; 382(1):83-91. PubMed ID: 123469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of (Mg2 + Ca2+)-ATPase of erythrocyte membranes prepared by different procedures: influence of Mg2+, Ca2+, ATP, and protein activator.
    Katz S; Roufogalis BD; Landman AD; Ho L
    J Supramol Struct; 1979; 10(2):215-25. PubMed ID: 156819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.