These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19608612)

  • 1. Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.
    Nikodinovic-Runic J; Flanagan M; Hume AR; Cagney G; O'Connor KE
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3348-3361. PubMed ID: 19608612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD
    Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyphosphate accumulation by Pseudomonas putida CA-3 and other medium-chain-length polyhydroxyalkanoate-accumulating bacteria under aerobic growth conditions.
    Tobin KM; McGrath JW; Mullan A; Quinn JP; O'Connor KE
    Appl Environ Microbiol; 2007 Feb; 73(4):1383-7. PubMed ID: 17158616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach.
    Poblete-Castro I; Escapa IF; Jäger C; Puchalka J; Lam CM; Schomburg D; Prieto MA; Martins dos Santos VA
    Microb Cell Fact; 2012 Mar; 11():34. PubMed ID: 22433058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3.
    Mooney A; O'Leary ND; Dobson AD
    Appl Environ Microbiol; 2006 Feb; 72(2):1302-9. PubMed ID: 16461680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor.
    Goff M; Ward PG; O'Connor KE
    J Biotechnol; 2007 Nov; 132(3):283-6. PubMed ID: 17559958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Changes in
    Dabrowska D; Mozejko-Ciesielska J; Pokój T; Ciesielski S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375721
    [No Abstract]   [Full Text] [Related]  

  • 9. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.
    O' Leary ND; O' Mahony MM; Dobson AD
    BMC Microbiol; 2011 Oct; 11():229. PubMed ID: 21995721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3.
    O'Connor K; Duetz W; Wind B; Dobson AD
    Appl Environ Microbiol; 1996 Oct; 62(10):3594-9. PubMed ID: 8967774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis.
    Możejko-Ciesielska J; Mostek A
    Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Duetz W; Dobson ADW
    Microbiology (Reading); 2001 Apr; 147(Pt 4):973-979. PubMed ID: 11283293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Response of
    Możejko-Ciesielska J; Serafim LS
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31795154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach.
    Cao B; Loh KC
    Biotechnol Bioeng; 2008 Dec; 101(6):1297-312. PubMed ID: 18980183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3.
    Dunn HD; Curtin T; O'riordan MA; Coen P; Kieran PM; Malone DM; O'Connor KE
    FEMS Microbiol Lett; 2005 Aug; 249(2):267-73. PubMed ID: 16002236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions.
    La Rosa R; de la Peña F; Prieto MA; Rojo F
    Environ Microbiol; 2014 Jan; 16(1):278-90. PubMed ID: 24118893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process analysis of the conversion of styrene to biomass and medium chain length polyhydroxyalkanoate in a two-phase bioreactor.
    Nikodinovic-Runic J; Casey E; Duane GF; Mitic D; Hume AR; Kenny ST; O'Connor KE
    Biotechnol Bioeng; 2011 Oct; 108(10):2447-55. PubMed ID: 21520026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth.
    Sauer K; Camper AK
    J Bacteriol; 2001 Nov; 183(22):6579-89. PubMed ID: 11673428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.