These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19609447)

  • 1. Drosophila embryos as model systems for monitoring bacterial infection in real time.
    Vlisidou I; Dowling AJ; Evans IR; Waterfield N; ffrench-Constant RH; Wood W
    PLoS Pathog; 2009 Jul; 5(7):e1000518. PubMed ID: 19609447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the in vivo targets of photorhabdus toxins in real-time using Drosophila embryos.
    Vlisidou I; Waterfield N; Wood W
    Adv Exp Med Biol; 2012; 710():49-57. PubMed ID: 22127885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The KdpD/KdpE two-component system of Photorhabdus asymbiotica promotes bacterial survival within M. sexta hemocytes.
    Vlisidou I; Eleftherianos I; Dorus S; Yang G; ffrench-Constant RH; Reynolds SE; Waterfield NR
    J Invertebr Pathol; 2010 Nov; 105(3):352-62. PubMed ID: 20932844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain.
    Dowling AJ; Waterfield NR; Hares MC; Le Goff G; Streuli CH; ffrench-Constant RH
    Cell Microbiol; 2007 Oct; 9(10):2470-84. PubMed ID: 17848168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Drosophila Thioester containing Protein-4 participates in the induction of the cellular immune response to the pathogen Photorhabdus.
    Shokal U; Eleftherianos I
    Dev Comp Immunol; 2017 Nov; 76():200-208. PubMed ID: 28642050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes.
    Guha A; Sriram V; Krishnan KS; Mayor S
    J Cell Sci; 2003 Aug; 116(Pt 16):3373-86. PubMed ID: 12857788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen.
    Waterfield NR; Daborn PJ; Dowling AJ; Yang G; Hares M; ffrench-Constant RH
    FEMS Microbiol Lett; 2003 Dec; 229(2):265-70. PubMed ID: 14680709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of Rho GTPases in embryonic blood cell migration in Drosophila.
    Paladi M; Tepass U
    J Cell Sci; 2004 Dec; 117(Pt 26):6313-26. PubMed ID: 15561773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture.
    ffrench-Constant RH; Dowling A; Waterfield NR
    Toxicon; 2007 Mar; 49(4):436-51. PubMed ID: 17207509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects.
    Daborn PJ; Waterfield N; Silva CP; Au CP; Sharma S; Ffrench-Constant RH
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10742-7. PubMed ID: 12136122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Drosophila platelet-derived growth factor and vascular endothelial growth factor-receptor related (Pvr) protein ligands Pvf2 and Pvf3 control hemocyte viability and invasive migration.
    Parsons B; Foley E
    J Biol Chem; 2013 Jul; 288(28):20173-83. PubMed ID: 23737520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth.
    Yang G; Dowling AJ; Gerike U; ffrench-Constant RH; Waterfield NR
    J Bacteriol; 2006 Mar; 188(6):2254-61. PubMed ID: 16513755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distinct function of Tep2 and Tep6 in the immune defense of Drosophila melanogaster against the pathogen Photorhabdus.
    Shokal U; Kopydlowski H; Eleftherianos I
    Virulence; 2017 Nov; 8(8):1668-1682. PubMed ID: 28498729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response.
    Sánchez-Sánchez BJ; Urbano JM; Comber K; Dragu A; Wood W; Stramer B; Martín-Bermudo MD
    Cell Rep; 2017 Nov; 21(6):1461-1470. PubMed ID: 29117553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photorhabdus luminescens Toxins TccC3 and TccC5 Affect the Interaction of Actin with Actin-Binding Proteins Essential for Treadmilling.
    Lang AE; Kühn S; Mannherz HG
    Curr Top Microbiol Immunol; 2017; 399():53-67. PubMed ID: 27757548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos.
    Martinek N; Shahab J; Saathoff M; Ringuette M
    J Cell Sci; 2008 May; 121(Pt 10):1671-80. PubMed ID: 18445681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxins and secretion systems of Photorhabdus luminescens.
    Rodou A; Ankrah DO; Stathopoulos C
    Toxins (Basel); 2010 Jun; 2(6):1250-64. PubMed ID: 22069636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrin βν-mediated phagocytosis of apoptotic cells in Drosophila embryos.
    Nagaosa K; Okada R; Nonaka S; Takeuchi K; Fujita Y; Miyasaka T; Manaka J; Ando I; Nakanishi Y
    J Biol Chem; 2011 Jul; 286(29):25770-7. PubMed ID: 21592968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens.
    Wilkinson P; Waterfield NR; Crossman L; Corton C; Sanchez-Contreras M; Vlisidou I; Barron A; Bignell A; Clark L; Ormond D; Mayho M; Bason N; Smith F; Simmonds M; Churcher C; Harris D; Thompson NR; Quail M; Parkhill J; Ffrench-Constant RH
    BMC Genomics; 2009 Jul; 10():302. PubMed ID: 19583835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster.
    Wood W; Faria C; Jacinto A
    J Cell Biol; 2006 May; 173(3):405-16. PubMed ID: 16651377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.