These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19609930)

  • 1. The GD box: a widespread noncontiguous supersecondary structural element.
    Alva V; Dunin-Horkawicz S; Habeck M; Coles M; Lupas AN
    Protein Sci; 2009 Sep; 18(9):1961-6. PubMed ID: 19609930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common evolutionary origin of swapped-hairpin and double-psi beta barrels.
    Coles M; Hulko M; Djuranovic S; Truffault V; Koretke K; Martin J; Lupas AN
    Structure; 2006 Oct; 14(10):1489-98. PubMed ID: 17027498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel.
    Shukla A; Guptasarma P
    Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families.
    Quistgaard EM; Thirup SS
    BMC Struct Biol; 2009 Jul; 9():46. PubMed ID: 19594936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence Pattern for Supersecondary Structure of Sandwich-Like Proteins.
    Kister AE
    Methods Mol Biol; 2019; 1958():313-327. PubMed ID: 30945226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the structural motifs of sandwich proteins.
    Fokas AS; Gelfand IM; Kister AE
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16780-3. PubMed ID: 15550537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. StackSSSPred: A Stacking-Based Prediction of Supersecondary Structure from Sequence.
    Flot M; Mishra A; Kuchi AS; Hoque MT
    Methods Mol Biol; 2019; 1958():101-122. PubMed ID: 30945215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences.
    Oldfield CJ; Chen K; Kurgan L
    Methods Mol Biol; 2019; 1958():73-100. PubMed ID: 30945214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular perspective of protein structures: application to fragment based loop modeling.
    Fernandez-Fuentes N; Fiser A
    Methods Mol Biol; 2013; 932():141-58. PubMed ID: 22987351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage.
    Chiang YS; Gelfand TI; Kister AE; Gelfand IM
    Proteins; 2007 Sep; 68(4):915-21. PubMed ID: 17557333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive analysis of the Greek key motifs in protein beta-barrels and beta-sandwiches.
    Zhang C; Kim SH
    Proteins; 2000 Aug; 40(3):409-19. PubMed ID: 10861931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology Searches Using Supersecondary Structure Code.
    Izumi H
    Methods Mol Biol; 2019; 1958():329-340. PubMed ID: 30945227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey of machine learning methods for secondary and supersecondary protein structure prediction.
    Ho HK; Zhang L; Ramamohanarao K; Martin S
    Methods Mol Biol; 2013; 932():87-106. PubMed ID: 22987348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity.
    Youkharibache P
    Methods Mol Biol; 2019; 1958():187-219. PubMed ID: 30945220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characteristics of novel protein folds.
    Fernandez-Fuentes N; Dybas JM; Fiser A
    PLoS Comput Biol; 2010 Apr; 6(4):e1000750. PubMed ID: 20421995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural classification of alphabetabeta and betabetaalpha supersecondary structure units in proteins.
    Boutonnet NS; Kajava AV; Rooman MJ
    Proteins; 1998 Feb; 30(2):193-212. PubMed ID: 9489927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank.
    Sun Z; Jiang B
    J Protein Chem; 1996 Oct; 15(7):675-90. PubMed ID: 8968959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of secondary and supersecondary structures.
    Chen K; Kurgan L
    Methods Mol Biol; 2013; 932():63-86. PubMed ID: 22987347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersecondary structure prediction of transmembrane beta-barrel proteins.
    Tran Vdu T; Chassignet P; Steyaert JM
    Methods Mol Biol; 2013; 932():277-94. PubMed ID: 22987359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein supersecondary structures based on the artificial neural network method.
    Sun Z; Rao X; Peng L; Xu D
    Protein Eng; 1997 Jul; 10(7):763-9. PubMed ID: 9342142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.