These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19609964)

  • 41. Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach.
    Sharma N; Hotte N; Rahman MH; Mohammadi M; Deyholos MK; Kav NN
    Proteomics; 2008 Sep; 8(17):3516-35. PubMed ID: 18668695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence of morphological and physiological events during natural ageing and senescence of a castor bean leaf: sieve tube occlusion and carbohydrate back-up precede chlorophyll degradation.
    Jongebloed U; Szederkényi J; Hartig K; Schobert C; Komor E
    Physiol Plant; 2004 Feb; 120(2):338-346. PubMed ID: 15032869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drought induces many forms of cysteine proteases not observed during natural senescence.
    Khanna-Chopra R; Srivalli B; Ahlawat YS
    Biochem Biophys Res Commun; 1999 Feb; 255(2):324-7. PubMed ID: 10049707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Genotypic Comparison Reveals That the Improvement in Nitrogen Remobilization Efficiency in Oilseed Rape Leaves Is Related to Specific Patterns of Senescence-Associated Protease Activities and Phytohormones.
    Poret M; Chandrasekar B; van der Hoorn RAL; Déchaumet S; Bouchereau A; Kim TH; Lee BR; Macquart F; Hara-Nishimura I; Avice JC
    Front Plant Sci; 2019; 10():46. PubMed ID: 30778361
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure.
    Yang P; Li Y; He C; Yan J; Zhang W; Li X; Xiang F; Zuo Z; Li X; Zhu Y; Liu X; Zhao X
    J Proteomics; 2020 Mar; 214():103621. PubMed ID: 31863931
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response?
    Fagioni M; Zolla L
    J Proteome Res; 2009 May; 8(5):2519-29. PubMed ID: 19290619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxalic acid-mediated stress responses in Brassica napus L.
    Liang Y; Strelkov SE; Kav NN
    Proteomics; 2009 Jun; 9(11):3156-73. PubMed ID: 19526549
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced expression of serine proteases during floral senescence in Gladiolus.
    Azeez A; Sane AP; Bhatnagar D; Nath P
    Phytochemistry; 2007 May; 68(10):1352-7. PubMed ID: 17412375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (
    Li M; Naeem MS; Ali S; Zhang L; Liu L; Ma N; Zhang C
    Biomed Res Int; 2017; 2017():8581072. PubMed ID: 28840127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N.
    Malagoli P; Laine P; Rossato L; Ourry A
    Ann Bot; 2005 Apr; 95(5):853-61. PubMed ID: 15701662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence.
    Barth O; Zschiesche W; Siersleben S; Humbeck K
    Physiol Plant; 2004 Jun; 121(2):282-293. PubMed ID: 15153196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence.
    Sorin C; Musse M; Mariette F; Bouchereau A; Leport L
    Planta; 2015 Feb; 241(2):333-46. PubMed ID: 25281330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic origin of δ15 N values in nitrogenous compounds from Brassica napus L. leaves.
    Gauthier PP; Lamothe M; Mahé A; Molero G; Nogués S; Hodges M; Tcherkez G
    Plant Cell Environ; 2013 Jan; 36(1):128-37. PubMed ID: 22709428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity.
    Etienne P; Desclos M; Le Gou L; Gombert J; Bonnefoy J; Maurel K; Le Dily F; Ourry A; Avice JC
    Funct Plant Biol; 2007 Oct; 34(10):895-906. PubMed ID: 32689418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape.
    Dellero Y; Clouet V; Marnet N; Pellizzaro A; Dechaumet S; Niogret MF; Bouchereau A
    J Exp Bot; 2020 Mar; 71(6):2098-2111. PubMed ID: 31807778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves.
    Clément G; Moison M; Soulay F; Reisdorf-Cren M; Masclaux-Daubresse C
    J Exp Bot; 2018 Feb; 69(4):891-903. PubMed ID: 28992054
    [TBL] [Abstract][Full Text] [Related]  

  • 58. C1A cysteine protease-cystatin interactions in leaf senescence.
    Díaz-Mendoza M; Velasco-Arroyo B; González-Melendi P; Martínez M; Díaz I
    J Exp Bot; 2014 Jul; 65(14):3825-33. PubMed ID: 24600023
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars.
    Katavic V; Agrawal GK; Hajduch M; Harris SL; Thelen JJ
    Proteomics; 2006 Aug; 6(16):4586-98. PubMed ID: 16847873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A proteomic and targeted metabolomic approach to investigate change in Lolium perenne roots when challenged with glycine.
    Thornton B; Osborne SM; Paterson E; Cash P
    J Exp Bot; 2007; 58(7):1581-90. PubMed ID: 17431027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.