BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19609999)

  • 1. Cyclopropenylcarbinol derivatives as new versatile intermediates in organic synthesis: application to the formation of enantiomerically pure alkylidenecyclopropane derivatives.
    Simaan S; Masarwa A; Zohar E; Stanger A; Bertus P; Marek I
    Chemistry; 2009 Aug; 15(34):8449-8464. PubMed ID: 19609999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regio- and Diastereoselective Carbometalation Reaction of Cyclopropenes.
    Cohen Y; Marek I
    Acc Chem Res; 2022 Oct; 55(19):2848-2868. PubMed ID: 36102664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereodivergent carbometalation reactions of cyclopropenylcarbinol derivatives.
    Simaan S; Marek I
    Org Lett; 2007 Jun; 9(13):2569-71. PubMed ID: 17536813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-catalyzed hydride transfer from LiAlH(4) for the formation of alkylidenecyclopropane derivatives.
    Simaan S; Marek I
    Chem Commun (Camb); 2009 Jan; (3):292-4. PubMed ID: 19209306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diastereoselective reduction of cyclopropenylcarbinol: new access to anti-cyclopropylcarbinol derivatives.
    Zohar E; Marek I
    Org Lett; 2004 Feb; 6(3):341-3. PubMed ID: 14748588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiomerically pure cyclopropenylcarbinols as a source of chiral alkylidenecyclopropane derivatives.
    Simaan S; Masarwa A; Bertus P; Marek I
    Angew Chem Int Ed Engl; 2006 Jun; 45(24):3963-5. PubMed ID: 16625668
    [No Abstract]   [Full Text] [Related]  

  • 7. Versatile Synthesis of Enantiomerically Pure 2-Alkoxy-1-Ethynylcyclopropanes and their Application in the Synthesis of Enantiomerically Pure Bicyclo-[3.3.0]oct-1-en-3-ones.
    Bräse S; Schömenauer S; McGaffin G; Stolle A; de Meijere A
    Chemistry; 1996 May; 2(5):545-555. PubMed ID: 29178228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulable and highly diastereoselective carbometalations of cyclopropenes.
    Didier D; Delaye PO; Simaan M; Island B; Eppe G; Eijsberg H; Kleiner A; Knochel P; Marek I
    Chemistry; 2014 Jan; 20(4):1038-48. PubMed ID: 24338953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-catalyzed rearrangement of enantiomerically pure alkylidenecyclopropane derivatives as a new access to cyclobutenes possessing quaternary stereocenters.
    Masarwa A; Fürstner A; Marek I
    Chem Commun (Camb); 2009 Oct; (38):5760-2. PubMed ID: 19774261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.
    Qu J; Helmchen G
    Acc Chem Res; 2017 Oct; 50(10):2539-2555. PubMed ID: 28937739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes.
    Ernouf G; Brayer JL; Meyer C; Cossy J
    Beilstein J Org Chem; 2019; 15():333-350. PubMed ID: 30800182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular docking and biologic activities.
    Atmaca U; Kaya R; Karaman HS; Çelik M; Gülçin İ
    Bioorg Chem; 2019 Jul; 88():102980. PubMed ID: 31174010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantiomerically enriched cyclopropene derivatives: versatile building blocks in asymmetric synthesis.
    Marek I; Simaan S; Masarwa A
    Angew Chem Int Ed Engl; 2007; 46(39):7364-76. PubMed ID: 17663496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and practical routes to enantiomerically pure 5-(trialkylsilyl)-2-cyclohexenones.
    Sarakinos G; Corey EJ
    Org Lett; 1999 Sep; 1(5):811-4. PubMed ID: 10823209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diastereoselective Hartwig-Buchwald reaction of chiral amines with rac-[2.2]paracyclophane derivatives.
    Kreis M; Friedmann CJ; Bräse S
    Chemistry; 2005 Dec; 11(24):7387-94. PubMed ID: 16163766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic processes in the copper-catalyzed substitution of chiral allylic acetates leading to loss of chiral information.
    Norinder J; Bäckvall JE
    Chemistry; 2007; 13(14):4094-102. PubMed ID: 17309081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zirconium-Catalyzed Asymmetric Carboalumination of Unactivated Terminal Alkenes.
    Xu S; Negishi EI
    Acc Chem Res; 2016 Oct; 49(10):2158-2168. PubMed ID: 27685327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diastereoselective Ru-catalyzed cross-metathesis-dihydroxylation sequence. an efficient approach toward enantiomerically enriched syn-diols.
    Neisius NM; Plietker B
    J Org Chem; 2008 Apr; 73(8):3218-27. PubMed ID: 18358049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.
    Gais HJ; Jagusch T; Spalthoff N; Gerhards F; Frank M; Raabe G
    Chemistry; 2003 Sep; 9(17):4202-21. PubMed ID: 12953206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclopropanation of protected chiral, acyclic allylic alcohols: expedient access to the anti-cyclopropylcarbinol derivatives.
    Charette AB; Lacasse MC
    Org Lett; 2002 Oct; 4(20):3351-3. PubMed ID: 12323016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.