BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19610065)

  • 21. Rbf/E2F1 control growth and endoreplication via steroid-independent Ecdysone Receptor signalling in Drosophila prostate-like secondary cells.
    Sekar A; Leiblich A; Wainwright SM; Mendes CC; Sarma D; Hellberg JEEU; Gandy C; Goberdhan DCI; Hamdy FC; Wilson C
    PLoS Genet; 2023 Jun; 19(6):e1010815. PubMed ID: 37363926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of annexin A7 suppresses senescence-associated heterochromatin foci formation and senescence through the AMPK/mTOR pathway in human dermal fibroblasts.
    Li N; Yan X; Cui X; Zhao C; Lin Z; Miao J
    J Cell Biochem; 2023 Oct; 124(10):1603-1614. PubMed ID: 37682859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Androgen receptors beyond prostate cancer: an old marker as a new target.
    Munoz J; Wheler JJ; Kurzrock R
    Oncotarget; 2015 Jan; 6(2):592-603. PubMed ID: 25595907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling a lethal prostate cancer variant with small-cell carcinoma features.
    Tzelepi V; Zhang J; Lu JF; Kleb B; Wu G; Wan X; Hoang A; Efstathiou E; Sircar K; Navone NM; Troncoso P; Liang S; Logothetis CJ; Maity SN; Aparicio AM
    Clin Cancer Res; 2012 Feb; 18(3):666-77. PubMed ID: 22156612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interferon-gamma reduces cell surface expression of annexin 2 and suppresses the invasive capacity of prostate cancer cells.
    Hastie C; Masters JR; Moss SE; Naaby-Hansen S
    J Biol Chem; 2008 May; 283(18):12595-603. PubMed ID: 18211896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse.
    Srivastava M; Montagna C; Leighton X; Glasman M; Naga S; Eidelman O; Ried T; Pollard HB
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14287-92. PubMed ID: 14608035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplex profiling identifies clinically relevant signalling proteins in an isogenic prostate cancer model of radioresistance.
    Inder S; Bates M; Ni Labhrai N; McDermott N; Schneider J; Erdmann G; Jamerson T; Belle VA; Prina-Mello A; Thirion P; Manecksha PR; Cormican D; Finn S; Lynch T; Marignol L
    Sci Rep; 2019 Nov; 9(1):17325. PubMed ID: 31758038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The X-linked tumor suppressor TSPX downregulates cancer-drivers/oncogenes in prostate cancer in a C-terminal acidic domain dependent manner.
    Kido T; Li Y; Tanaka Y; Dahiya R; Chris Lau YF
    Oncotarget; 2019 Feb; 10(15):1491-1506. PubMed ID: 30863497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy.
    Huang MF; Wang YX; Chou YT; Lee DF
    Cancers (Basel); 2024 Apr; 16(8):. PubMed ID: 38672640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers.
    Soundararajan R; Aparicio AM; Logothetis CJ; Mani SA; Maity SN
    Front Oncol; 2018; 8():69. PubMed ID: 29600194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic-Based Mechanical Phenotyping of Androgen-Sensitive and Non-sensitive Prostate Cancer Cells Lines.
    Liu N; Du P; Xiao X; Liu Y; Peng Y; Yang C; Yue T
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31547397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic evolution shapes prostate cancer disease type.
    Woodcock DJ; Sahli A; Teslo R; Bhandari V; Gruber AJ; Ziubroniewicz A; Gundem G; Xu Y; Butler A; Anokian E; Pope BJ; Jung CH; Tarabichi M; Dentro SC; Farmery JHR; ; Van Loo P; Warren AY; Gnanapragasam V; Hamdy FC; Bova GS; Foster CS; Neal DE; Lu YJ; Kote-Jarai Z; Fraser M; Bristow RG; Boutros PC; Costello AJ; Corcoran NM; Hovens CM; Massie CE; Lynch AG; Brewer DS; Eeles RA; Cooper CS; Wedge DC
    Cell Genom; 2024 Mar; 4(3):100511. PubMed ID: 38428419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evasion of targeted cancer therapy through stem-cell-like reprogramming.
    Wadosky KM; Ellis L; Goodrich DW
    Mol Cell Oncol; 2017; 4(2):e1291397. PubMed ID: 28401192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Dominant-Negative Mutant of ANXA7 Impairs Calcium Signaling and Enhances the Proliferation of Prostate Cancer Cells by Downregulating the IP3 Receptor and the PI3K/mTOR Pathway.
    Srivastava M; Bera A; Eidelman O; Tran MB; Jozwik C; Glasman M; Leighton X; Caohuy H; Pollard HB
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights of RKIP-Derived Suppression of Prostate Cancer.
    Dong Y; Lin X; Kapoor A; Gu Y; Xu H; Major P; Tang D
    Cancers (Basel); 2021 Dec; 13(24):. PubMed ID: 34945007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AnnexinA7 promotes epithelial-mesenchymal transition by interacting with Sorcin and contributes to aggressiveness in hepatocellular carcinoma.
    Ling F; Zhang H; Sun Y; Meng J; Sanches JGP; Huang H; Zhang Q; Yu X; Wang B; Hou L; Zhang J
    Cell Death Dis; 2021 Oct; 12(11):1018. PubMed ID: 34716295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prognostic roles of miR-124-3p and its target ANXA7 and their effects on cell migration and invasion in hepatocellular carcinoma.
    Wang H; Mao J; Huang Y; Zhang J; Zhong L; Wu Y; Huang H; Yang J; Wei Y; Tang J
    Int J Clin Exp Pathol; 2020; 13(3):357-370. PubMed ID: 32269673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression levels and prognostic values of annexins in liver cancer.
    Zhuang C; Wang P; Sun T; Zheng L; Ming L
    Oncol Lett; 2019 Dec; 18(6):6657-6669. PubMed ID: 31807177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue microarray analysis delineate potential prognostic role of Annexin A7 in prostate cancer progression.
    Leighton X; Bera A; Eidelman O; Bubendorf L; Zellweger T; Banerjee J; Gelmann EP; Pollard HB; Srivastava M
    PLoS One; 2018; 13(10):e0205837. PubMed ID: 30321230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of A549 human lung epithelial cells to cristobalite and α-quartz exposures assessed by toxicoproteomics and gene expression analysis.
    Vuong NQ; Goegan P; De Rose F; Breznan D; Thomson EM; O'Brien JS; Karthikeyan S; Williams A; Vincent R; Kumarathasan P
    J Appl Toxicol; 2017 Jun; 37(6):721-731. PubMed ID: 27917503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.