These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 1961145)
1. Turbulent flow effects on NMR imaging: measurement of turbulent intensity. Gao JH; Gore JO Med Phys; 1991; 18(5):1045-51. PubMed ID: 1961145 [TBL] [Abstract][Full Text] [Related]
2. Mapping of turbulent intensity by magnetic resonance imaging. Gatenby JC; Gore JC J Magn Reson B; 1994 Jun; 104(2):119-26. PubMed ID: 8049864 [TBL] [Abstract][Full Text] [Related]
3. Effects of turbulence on signal intensity in gradient echo images. Evans AJ; Blinder RA; Herfkens RJ; Spritzer CE; Kuethe DO; Fram EK; Hedlund LW Invest Radiol; 1988 Jul; 23(7):512-8. PubMed ID: 3170139 [TBL] [Abstract][Full Text] [Related]
4. A general model of microcirculatory blood flow effects in gradient sensitized MRI. Kennan RP; Gao JH; Zhong J; Gore JC Med Phys; 1994 Apr; 21(4):539-45. PubMed ID: 8058020 [TBL] [Abstract][Full Text] [Related]
5. Studies of water in biological systems by a pulsed NMR method. 1. Flow profile in a cylindrical tube. Fukuda K; Imai Y; Hirai A Biotelem Patient Monit; 1978; 5(4):223-8. PubMed ID: 754828 [TBL] [Abstract][Full Text] [Related]
6. NMR even echo rephasing in slow laminar flow. Waluch V; Bradley WG J Comput Assist Tomogr; 1984 Aug; 8(4):594-8. PubMed ID: 6330184 [TBL] [Abstract][Full Text] [Related]
7. Turbulent pipe flow studied by time-averaged NMR imaging: measurements of velocity profile and turbulent intensity. Li TQ; Seymour JD; Powell RL; McCarthy KL; Odberg L; McCarthy MJ Magn Reson Imaging; 1994; 12(6):923-34. PubMed ID: 7968291 [TBL] [Abstract][Full Text] [Related]
8. MRI of blood flow: correlation of image appearance with spin-echo phase shift and signal intensity. Valk PE; Hale JD; Crooks LE; Kaufman L; Roos MS; Ortendahl DA; Higgins CB AJR Am J Roentgenol; 1986 May; 146(5):931-9. PubMed ID: 3485910 [TBL] [Abstract][Full Text] [Related]
9. Analysis of spin-echo rephasing with pulsatile flow in 2D FT magnetic resonance imaging. Katz J; Peshock RM; McNamee P; Schaefer S; Malloy CR; Parkey RW Magn Reson Med; 1987 Apr; 4(4):307-22. PubMed ID: 3586978 [TBL] [Abstract][Full Text] [Related]
10. Blood flow imaging by cine magnetic resonance. Nayler GL; Firmin DN; Longmore DB J Comput Assist Tomogr; 1986; 10(5):715-22. PubMed ID: 3528245 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance signal from flowing nuclei in rapid imaging using gradient echoes. Gao JH; Holland SK; Gore JC Med Phys; 1988; 15(6):809-14. PubMed ID: 3237136 [TBL] [Abstract][Full Text] [Related]
12. Improving MR image quality in the presence of motion by using rephasing gradients. Haacke EM; Lenz GW AJR Am J Roentgenol; 1987 Jun; 148(6):1251-8. PubMed ID: 3495155 [TBL] [Abstract][Full Text] [Related]
18. [Poststenotic flow in MRT: phantom measurements using spin-echo and gradient-echo sequences]. Spielmann RP; Thiele F; Heller M; Bücheler E Digitale Bilddiagn; 1989 Jun; 9(2):55-8. PubMed ID: 2752673 [TBL] [Abstract][Full Text] [Related]
19. MR imaging of venous and arterial flow by a selective saturation-recovery spin echo (SSRSE) method. Wehrli FW; Shimakawa A; MacFall JR; Axel L; Perman W J Comput Assist Tomogr; 1985; 9(3):537-45. PubMed ID: 3989053 [TBL] [Abstract][Full Text] [Related]
20. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels. Oshinski JN; Ku DN; Pettigrew RI Magn Reson Med; 1995 Feb; 33(2):193-9. PubMed ID: 7707909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]