These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 19614601)

  • 21. [Effects of smoking on the pathogenesis of COPD].
    Tatsumi K
    Nihon Rinsho; 2007 Apr; 65(4):605-10. PubMed ID: 17419375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction in COPD experiment (ICE): a hazardous combination of cigarette smoking and bronchodilation in chronic obstructive pulmonary disease.
    van Dijk WD; Heijdra Y; Scheepers PT; Lenders JW; van Weel C; Schermer TR
    Med Hypotheses; 2010 Feb; 74(2):277-80. PubMed ID: 19800175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease.
    Yoshida T; Tuder RM
    Physiol Rev; 2007 Jul; 87(3):1047-82. PubMed ID: 17615396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.
    Aoshiba K; Tsuji T; Yamaguchi K; Itoh M; Nakamura H
    Eur Respir J; 2013 Dec; 42(6):1689-95. PubMed ID: 23397294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model.
    Selman M; Pardo A
    Am J Respir Crit Care Med; 2014 May; 189(10):1161-72. PubMed ID: 24641682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The possible role of granzyme B in the pathogenesis of chronic obstructive pulmonary disease.
    Ngan DA; Vickerman SV; Granville DJ; Man SF; Sin DD
    Ther Adv Respir Dis; 2009 Jun; 3(3):113-29. PubMed ID: 19638369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Pathogenesis of chronic obstructive pulmonary disease. Molecular mechanisms (part II)].
    Szulakowski P; Mróz RM; Pierzchała W; Chyczewska E; MacNee W
    Wiad Lek; 2006; 59(3-4):250-4. PubMed ID: 16813274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can we delay the accelerated lung aging in COPD? Anti-aging molecules and interventions.
    Papaioannou AI; Rossios C; Kostikas K; Ito K
    Curr Drug Targets; 2013 Feb; 14(2):149-57. PubMed ID: 23256715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inflammation, chronic obstructive pulmonary disease and aging.
    Provinciali M; Cardelli M; Marchegiani F
    Curr Opin Pulm Med; 2011 Dec; 17 Suppl 1():S3-10. PubMed ID: 22209928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New paradigms in the pathogenesis of chronic obstructive pulmonary disease I.
    MacNee W; Tuder RM
    Proc Am Thorac Soc; 2009 Sep; 6(6):527-31. PubMed ID: 19741262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease.
    MacNee W
    Proc Am Thorac Soc; 2005; 2(1):50-60. PubMed ID: 16113469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Cell senescence and pathophysiology of chronic lung diseases: role in chronic obstructive pulmonary disease].
    Adnot S
    Bull Acad Natl Med; 2014; 198(4-5):659-71. PubMed ID: 26753399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and systematic oxidative stress of a rat model of chronic bronchitis and emphysema induced by biomass smoke.
    Hu G; Zhou Y; Hong W; Tian J; Hu J; Peng G; Cui J; Li B; Ran P
    Exp Lung Res; 2013 Aug; 39(6):229-40. PubMed ID: 23682816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathogenesis of chronic obstructive pulmonary disease.
    Macnee W
    Clin Chest Med; 2007 Sep; 28(3):479-513, v. PubMed ID: 17720039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can increased understanding of the role of lung development and aging drive new advances in chronic obstructive pulmonary disease?
    Maciewicz RA; Warburton D; Rennard SI
    Proc Am Thorac Soc; 2009 Dec; 6(7):614-7. PubMed ID: 19934358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease.
    Lin JL; Thomas PS
    COPD; 2010 Aug; 7(4):291-306. PubMed ID: 20673039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of development of multimorbidity in the elderly.
    Barnes PJ
    Eur Respir J; 2015 Mar; 45(3):790-806. PubMed ID: 25614163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steroid-resistant inflammation in a rat model of chronic obstructive pulmonary disease is associated with a lack of nuclear factor-kappaB pathway activation.
    Birrell MA; Wong S; Hele DJ; McCluskie K; Hardaker E; Belvisi MG
    Am J Respir Crit Care Med; 2005 Jul; 172(1):74-84. PubMed ID: 15805185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiotensin-converting enzyme-2 overexpression attenuates inflammation in rat model of chronic obstructive pulmonary disease.
    Xue T; Wei N; Xin Z; Qingyu X
    Inhal Toxicol; 2014 Jan; 26(1):14-22. PubMed ID: 24417403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel aspects of pathogenesis and regeneration mechanisms in COPD.
    Bagdonas E; Raudoniute J; Bruzauskaite I; Aldonyte R
    Int J Chron Obstruct Pulmon Dis; 2015; 10():995-1013. PubMed ID: 26082624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.