These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 19614608)

  • 1. Role of CFTR, Pseudomonas aeruginosa and Toll-like receptors in cystic fibrosis lung inflammation.
    Buchanan PJ; Ernst RK; Elborn JS; Schock B
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):863-7. PubMed ID: 19614608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas or LPS exposure alters CFTR iodide efflux in 2WT2 epithelial cells with time and dose dependence.
    Haenisch MD; Ciche TA; Luckie DB
    Biochem Biophys Res Commun; 2010 Apr; 394(4):1087-92. PubMed ID: 20346919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Early bronchial inflammation in cystic fibrosis].
    Puchelle E
    J Soc Biol; 2002; 196(1):29-35. PubMed ID: 12134630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the cystic fibrosis transmembrane conductance regulator in internalization of Pseudomonas aeruginosa by polarized respiratory epithelial cells.
    Darling KE; Dewar A; Evans TJ
    Cell Microbiol; 2004 Jun; 6(6):521-33. PubMed ID: 15104594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation.
    Saadane A; Soltys J; Berger M
    J Allergy Clin Immunol; 2006 May; 117(5):1163-9. PubMed ID: 16675347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-inflammatory effect of miglustat in bronchial epithelial cells.
    Dechecchi MC; Nicolis E; Norez C; Bezzerri V; Borgatti M; Mancini I; Rizzotti P; Ribeiro CM; Gambari R; Becq F; Cabrini G
    J Cyst Fibros; 2008 Nov; 7(6):555-65. PubMed ID: 18815075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis.
    Marcet B; Boeynaems JM
    Pharmacol Ther; 2006 Dec; 112(3):719-32. PubMed ID: 16828872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifier effect of the Toll-like receptor 4 D299G polymorphism in children with cystic fibrosis.
    Urquhart DS; Allen J; Elrayess M; Fidler K; Klein N; Jaffé A
    Arch Immunol Ther Exp (Warsz); 2006; 54(4):271-6. PubMed ID: 16830219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent.
    Van de Weert-van Leeuwen PB; Van Meegen MA; Speirs JJ; Pals DJ; Rooijakkers SH; Van der Ent CK; Terheggen-Lagro SW; Arets HG; Beekman JM
    Am J Respir Cell Mol Biol; 2013 Sep; 49(3):463-70. PubMed ID: 23617438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune responses in cystic fibrosis: are they intrinsically defective?
    Ratner D; Mueller C
    Am J Respir Cell Mol Biol; 2012 Jun; 46(6):715-22. PubMed ID: 22403802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies.
    Kukavica-Ibrulj I; Levesque RC
    Lab Anim; 2008 Oct; 42(4):389-412. PubMed ID: 18782827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phagocytic and signaling innate immune receptors: are they dysregulated in cystic fibrosis in the fight against Pseudomonas aeruginosa?
    Sallenave JM
    Int J Biochem Cell Biol; 2014 Jul; 52():103-7. PubMed ID: 24508137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toll-like receptor-4 genotype influences the survival of cystic fibrosis mice.
    Canale-Zambrano JC; Auger ML; Haston CK
    Am J Physiol Gastrointest Liver Physiol; 2010 Aug; 299(2):G381-90. PubMed ID: 20522639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What's new in CF airway inflammation: an update.
    Ratjen F
    Paediatr Respir Rev; 2006; 7 Suppl 1():S70-2. PubMed ID: 16798601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction to section I: overview of approaches to study cystic fibrosis pathophysiology.
    Clunes MT; Boucher RC
    Methods Mol Biol; 2011; 742():3-14. PubMed ID: 21547723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis.
    Goldberg JB; Pier GB
    Trends Microbiol; 2000 Nov; 8(11):514-20. PubMed ID: 11121762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea.
    Luan X; Campanucci VA; Nair M; Yilmaz O; Belev G; Machen TE; Chapman D; Ianowski JP
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12930-5. PubMed ID: 25136096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR-dependent susceptibility of the cystic fibrosis-host to Pseudomonas aeruginosa.
    Grassmé H; Becker KA; Zhang Y; Gulbins E
    Int J Med Microbiol; 2010 Dec; 300(8):578-83. PubMed ID: 20951085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunopathophysiologic mechanisms of cystic fibrosis lung disease.
    Soferman R
    Isr Med Assoc J; 2006 Jan; 8(1):44-8. PubMed ID: 16450752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine receptors, cystic fibrosis, and airway hydration.
    Com G; Clancy JP
    Handb Exp Pharmacol; 2009; (193):363-81. PubMed ID: 19639288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.