These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19615101)
1. Evolution of a subtilisin-like protease gene family in the grass endophytic fungus Epichloë festucae. Bryant MK; Schardl CL; Hesse U; Scott B BMC Evol Biol; 2009 Jul; 9():168. PubMed ID: 19615101 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic analyses reveal molecular signatures associated with functional divergence among Subtilisin like Serine Proteases are linked to lifestyle transitions in Hypocreales. Varshney D; Jaiswar A; Adholeya A; Prasad P BMC Evol Biol; 2016 Oct; 16(1):220. PubMed ID: 27756202 [TBL] [Abstract][Full Text] [Related]
3. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Li J; Yu L; Yang J; Dong L; Tian B; Yu Z; Liang L; Zhang Y; Wang X; Zhang K BMC Evol Biol; 2010 Mar; 10():68. PubMed ID: 20211028 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of a beta-1,6-glucanase gene from the grass endophytic fungus Epichloë festucae. Bryant MK; May KJ; Bryan GT; Scott B Fungal Genet Biol; 2007 Aug; 44(8):808-17. PubMed ID: 17303450 [TBL] [Abstract][Full Text] [Related]
5. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Li J; Gu F; Wu R; Yang J; Zhang KQ Sci Rep; 2017 Mar; 7():45456. PubMed ID: 28358043 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic and exon-intron structure analysis of fungal subtilisins: support for a mixed model of intron evolution. Wang C; Typas MA; Butt TM J Mol Evol; 2005 Feb; 60(2):238-46. PubMed ID: 15785852 [TBL] [Abstract][Full Text] [Related]
7. Efficient targeted mutagenesis in Epichloë festucae using a split marker system. Rahnama M; Forester N; Ariyawansa KG; Voisey CR; Johnson LJ; Johnson RD; Fleetwood DJ J Microbiol Methods; 2017 Mar; 134():62-65. PubMed ID: 28017692 [TBL] [Abstract][Full Text] [Related]
8. Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae. Winter DJ; Ganley ARD; Young CA; Liachko I; Schardl CL; Dupont PY; Berry D; Ram A; Scott B; Cox MP PLoS Genet; 2018 Oct; 14(10):e1007467. PubMed ID: 30356280 [TBL] [Abstract][Full Text] [Related]
9. Secreted subtilisin gene family in Trichophyton rubrum. Jousson O; Léchenne B; Bontems O; Mignon B; Reichard U; Barblan J; Quadroni M; Monod M Gene; 2004 Sep; 339():79-88. PubMed ID: 15363848 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae. Li X; Song H; Kuang Y; Chen S; Tian P; Li C; Nan Z Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27428961 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the Biosynthetic Gene Cluster for the Ribosomally Synthesized Cyclic Peptide Epichloëcyclins in Zhang W; Forester NT; Chettri P; Heilijgers M; Mace WJ; Maes E; Morozova Y; Applegate ER; Johnson RD; Johnson LJ J Agric Food Chem; 2023 Sep; 71(38):13965-13978. PubMed ID: 37704203 [TBL] [Abstract][Full Text] [Related]
12. Greater genetic and regulatory plasticity of retained duplicates in Epichloë endophytic fungi. Wu B; Cox MP Mol Ecol; 2019 Dec; 28(23):5103-5114. PubMed ID: 31614039 [TBL] [Abstract][Full Text] [Related]
13. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Bagga S; Hu G; Screen SE; St Leger RJ Gene; 2004 Jan; 324():159-69. PubMed ID: 14693381 [TBL] [Abstract][Full Text] [Related]
14. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history. Kutil BL; Greenwald C; Liu G; Spiering MJ; Schardl CL; Wilkinson HH Fungal Genet Biol; 2007 Oct; 44(10):1002-10. PubMed ID: 17509914 [TBL] [Abstract][Full Text] [Related]
15. Contig assembly and microsynteny analysis using a bacterial artificial chromosome library for Epichloë festucae, a mutualistic fungal endophyte of grasses. Kutil BL; Liu G; Vrebalov J; Wilkinson HH Fungal Genet Biol; 2004 Jan; 41(1):23-32. PubMed ID: 14643256 [TBL] [Abstract][Full Text] [Related]
16. The LaeA orthologue in Epichloë festucae is required for symbiotic interaction with Lolium perenne. Rahnama M; Maclean P; Fleetwood DJ; Johnson RD Fungal Genet Biol; 2019 Aug; 129():74-85. PubMed ID: 31071427 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of the pepD gene of Aspergillus niger which codes for a subtilisin-like protease. Jarai G; Kirchherr D; Buxton FP Gene; 1994 Feb; 139(1):51-7. PubMed ID: 8112588 [TBL] [Abstract][Full Text] [Related]
18. Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloë festucae. Forester NT; Lane GA; Steringa M; Lamont IL; Johnson LJ Fungal Genet Biol; 2018 Feb; 111():60-72. PubMed ID: 29155067 [TBL] [Abstract][Full Text] [Related]
19. Comparative evolutionary histories of fungal proteases reveal gene gains in the mycoparasitic and nematode-parasitic fungus Clonostachys rosea. Iqbal M; Dubey M; Gudmundsson M; Viketoft M; Jensen DF; Karlsson M BMC Evol Biol; 2018 Nov; 18(1):171. PubMed ID: 30445903 [TBL] [Abstract][Full Text] [Related]
20. A nuclear protein NsiA from Epichloë festucae interacts with a MAP kinase MpkB and regulates the expression of genes required for symbiotic infection and hyphal cell fusion. Tanaka A; Kamiya S; Ozaki Y; Kameoka S; Kayano Y; Saikia S; Akano F; Uemura A; Takagi H; Terauchi R; Maruyama JI; Hammadeh HH; Fleissner A; Scott B; Takemoto D Mol Microbiol; 2020 Oct; 114(4):626-640. PubMed ID: 32634260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]