These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 19615380)
1. Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control. Guo H; Chen L J Theor Biol; 2009 Oct; 260(4):502-9. PubMed ID: 19615380 [TBL] [Abstract][Full Text] [Related]
2. Periodic solution of a chemostat model with Beddington-DeAnglis uptake function and impulsive state feedback control. Li Z; Wang T; Chen L J Theor Biol; 2009 Nov; 261(1):23-32. PubMed ID: 19631663 [TBL] [Abstract][Full Text] [Related]
3. Delayed feedback control for a chemostat model. Tagashira O; Hara T Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826 [TBL] [Abstract][Full Text] [Related]
4. A periodic Droop model for two species competition in a chemostat. White MC; Zhao XQ Bull Math Biol; 2009 Jan; 71(1):145-61. PubMed ID: 18825462 [TBL] [Abstract][Full Text] [Related]
5. Dynamic analysis of lactic acid fermentation in membrane bioreactor. Zhao Z; Chen L J Theor Biol; 2009 Mar; 257(2):270-8. PubMed ID: 19135457 [TBL] [Abstract][Full Text] [Related]
7. Feedback control for chemostat models. De Leenheer P; Smith H J Math Biol; 2003 Jan; 46(1):48-70. PubMed ID: 12525935 [TBL] [Abstract][Full Text] [Related]
8. Pest management through continuous and impulsive control strategies. Zhang H; Jiao J; Chen L Biosystems; 2007; 90(2):350-61. PubMed ID: 17092633 [TBL] [Abstract][Full Text] [Related]
9. Complex dynamics of microbial competition in the gradostat. Gaki A; Theodorou A; Vayenas DV; Pavlou S J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443 [TBL] [Abstract][Full Text] [Related]
10. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654 [TBL] [Abstract][Full Text] [Related]
11. The dynamics of plant disease models with continuous and impulsive cultural control strategies. Meng X; Li Z J Theor Biol; 2010 Sep; 266(1):29-40. PubMed ID: 20540953 [TBL] [Abstract][Full Text] [Related]
12. The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator. Nie L; Teng Z; Hu L; Peng J Biosystems; 2009 Nov; 98(2):67-72. PubMed ID: 19523503 [TBL] [Abstract][Full Text] [Related]
13. Mathematical model for diffusion of the rhizosphere microbial degradation with impulsive feedback control. Zhao Z; Chen Y; Li Q; Wu X J Biol Dyn; 2020 Dec; 14(1):566-577. PubMed ID: 32633218 [TBL] [Abstract][Full Text] [Related]
14. Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate. Lenas P; Pavlou S Math Biosci; 1995 Oct; 129(2):111-42. PubMed ID: 7549217 [TBL] [Abstract][Full Text] [Related]
15. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox. Snoep JL; Jensen PR; Groeneveld P; Molenaar D; Kholodenko BN; Westerhoff HV Biochem Mol Biol Int; 1994 Aug; 33(5):1023-32. PubMed ID: 7987249 [TBL] [Abstract][Full Text] [Related]
16. Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson-Dulac criterion. Fiedler B; Hsu SB J Math Biol; 2009 Aug; 59(2):233-53. PubMed ID: 18956192 [TBL] [Abstract][Full Text] [Related]
17. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors. Ako OY; Kitamura Y; Intabon K; Satake T Bioresour Technol; 2008 Sep; 99(14):6305-10. PubMed ID: 18262412 [TBL] [Abstract][Full Text] [Related]
18. On the impulsive controllability and bifurcation of a predator-pest model of IPM. Zhang H; Georgescu P; Chen L Biosystems; 2008 Sep; 93(3):151-71. PubMed ID: 18467020 [TBL] [Abstract][Full Text] [Related]