These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 19615404)

  • 1. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition.
    Eagle DM; Baunez C
    Neurosci Biobehav Rev; 2010 Jan; 34(1):50-72. PubMed ID: 19615404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition and impulsivity: behavioral and neural basis of response control.
    Bari A; Robbins TW
    Prog Neurobiol; 2013 Sep; 108():44-79. PubMed ID: 23856628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats.
    Eagle DM; Wong JC; Allan ME; Mar AC; Theobald DE; Robbins TW
    J Neurosci; 2011 May; 31(20):7349-56. PubMed ID: 21593319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder.
    Rubia K; Cubillo A; Smith AB; Woolley J; Heyman I; Brammer MJ
    Hum Brain Mapp; 2010 Feb; 31(2):287-99. PubMed ID: 19777552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-Brain Stimulation of the Subthalamic Nucleus Selectively Decreases Risky Choice in Risk-Preferring Rats.
    Adams WK; Vonder Haar C; Tremblay M; Cocker PJ; Silveira MM; Kaur S; Baunez C; Winstanley CA
    eNeuro; 2017; 4(4):. PubMed ID: 28791332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats.
    Winter C; Mundt A; Jalali R; Joel D; Harnack D; Morgenstern R; Juckel G; Kupsch A
    Exp Neurol; 2008 Mar; 210(1):217-28. PubMed ID: 18076877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal models of obsessive-compulsive disorder: rationale to understanding psychobiology and pharmacology.
    Korff S; Harvey BH
    Psychiatr Clin North Am; 2006 Jun; 29(2):371-90. PubMed ID: 16650714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target.
    Chabardès S; Polosan M; Krack P; Bastin J; Krainik A; David O; Bougerol T; Benabid AL
    World Neurosurg; 2013; 80(3-4):S31.e1-8. PubMed ID: 22469523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emotions Modulate Subthalamic Nucleus Activity: New Evidence in Obsessive-Compulsive Disorder and Parkinson's Disease Patients.
    Buot A; Karachi C; Lau B; Belaid H; Fernandez-Vidal S; Welter ML; Mallet L
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2021 May; 6(5):556-567. PubMed ID: 33060034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus.
    Eagle DM; Baunez C; Hutcheson DM; Lehmann O; Shah AP; Robbins TW
    Cereb Cortex; 2008 Jan; 18(1):178-88. PubMed ID: 17517682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review.
    Fineberg NA; Potenza MN; Chamberlain SR; Berlin HA; Menzies L; Bechara A; Sahakian BJ; Robbins TW; Bullmore ET; Hollander E
    Neuropsychopharmacology; 2010 Feb; 35(3):591-604. PubMed ID: 19940844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subthalamic deep brain stimulation identifies frontal networks supporting initiation, inhibition and strategy use in Parkinson's disease.
    Mosley PE; Robinson K; Coyne T; Silburn P; Barker MS; Breakspear M; Robinson GA; Perry A
    Neuroimage; 2020 Dec; 223():117352. PubMed ID: 32916288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces 'compulsive' lever-pressing in rats.
    Klavir O; Flash S; Winter C; Joel D
    Exp Neurol; 2009 Jan; 215(1):101-9. PubMed ID: 18951894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural connectivity of discrete networks underlies impulsivity and gambling in Parkinson's disease.
    Mosley PE; Paliwal S; Robinson K; Coyne T; Silburn P; Tittgemeyer M; Stephan KE; Breakspear M; Perry A
    Brain; 2019 Dec; 142(12):3917-3935. PubMed ID: 31665241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused stimulation of dorsal subthalamic nucleus improves reactive inhibitory control of action impulses.
    van Wouwe NC; Pallavaram S; Phibbs FT; Martinez-Ramirez D; Neimat JS; Dawant BM; D'Haese PF; Kanoff KE; van den Wildenberg WPM; Okun MS; Wylie SA
    Neuropsychologia; 2017 May; 99():37-47. PubMed ID: 28237741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A causal role for the human subthalamic nucleus in non-selective cortico-motor inhibition.
    Wessel JR; Diesburg DA; Chalkley NH; Greenlee JDW
    Curr Biol; 2022 Sep; 32(17):3785-3791.e3. PubMed ID: 35841891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct cortico-striatal connections with subthalamic nucleus underlie facets of compulsivity.
    Morris LS; Baek K; Voon V
    Cortex; 2017 Mar; 88():143-150. PubMed ID: 28103527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-brain stimulation of the subthalamic nucleus improves overriding motor actions in Parkinson's disease.
    van den Wildenberg WPM; van Wouwe NC; Ridderinkhof KR; Neimat JS; Elias WJ; Bashore TR; Wylie SA
    Behav Brain Res; 2021 Mar; 402():113124. PubMed ID: 33422595
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.