These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 19615433)

  • 1. Electrophysiological properties of ventral cochlear nucleus neurons of the dog.
    Bal R; Baydas G; Naziroglu M
    Hear Res; 2009 Oct; 256(1-2):93-103. PubMed ID: 19615433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological properties of octopus neurons of the cat cochlear nucleus: an in vitro study.
    Bal R; Baydas G
    J Assoc Res Otolaryngol; 2009 Jun; 10(2):281-93. PubMed ID: 19277784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical membrane properties of trapezoid body neurons in the rat auditory brain stem are preserved in organotypic slice cultures.
    Löhrke S; Kungel M; Friauf E
    J Neurobiol; 1998 Sep; 36(3):395-409. PubMed ID: 9733074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-sensitive conductances of bushy cells of the Mammalian ventral cochlear nucleus.
    Cao XJ; Shatadal S; Oertel D
    J Neurophysiol; 2007 Jun; 97(6):3961-75. PubMed ID: 17428908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effects of the neonicotinoid insecticide imidacloprid in the cholinergic synapses of the stellate cells of the mouse cochlear nucleus using whole-cell patch-clamp recording.
    Bal R; Erdogan S; Theophilidis G; Baydas G; Naziroglu M
    Neurotoxicology; 2010 Jan; 31(1):113-20. PubMed ID: 19853623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic perturbations suggest a role of the resting potential in regulating the expression of the ion channels of the KCNA and HCN families in octopus cells of the ventral cochlear nucleus.
    Cao XJ; Oertel D
    Hear Res; 2017 Mar; 345():57-68. PubMed ID: 28065805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alpha-dendrotoxin on K+ currents and action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons.
    Yoshida S; Matsumoto S
    J Pharmacol Exp Ther; 2005 Jul; 314(1):437-45. PubMed ID: 15831438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro.
    Kuenzel T; Wirth MJ; Luksch H; Wagner H; Mey J
    Brain Res; 2009 Dec; 1302():64-75. PubMed ID: 19766604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization.
    Ferragamo MJ; Oertel D
    J Neurophysiol; 2002 May; 87(5):2262-70. PubMed ID: 11976365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken.
    Fukui I; Ohmori H
    J Physiol; 2003 Apr; 548(Pt 1):219-32. PubMed ID: 12576492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus.
    Rosenberger MH; Fremouw T; Casseday JH; Covey E
    J Comp Neurol; 2003 Jul; 462(1):101-20. PubMed ID: 12761827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus.
    Bal R; Oertel D
    J Neurophysiol; 2000 Aug; 84(2):806-17. PubMed ID: 10938307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiology of regular firing cells in the rat perirhinal cortex.
    D'Antuono M; Biagini G; Tancredi V; Avoli M
    Hippocampus; 2001; 11(6):662-72. PubMed ID: 11811660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium currents in octopus cells of the mammalian cochlear nucleus.
    Bal R; Oertel D
    J Neurophysiol; 2001 Nov; 86(5):2299-311. PubMed ID: 11698520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties.
    Ostapoff EM; Feng JJ; Morest DK
    J Comp Neurol; 1994 Aug; 346(1):19-42. PubMed ID: 7962710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The commissural pathway and cochlear nucleus bushy neurons: an in vivo intracellular investigation.
    Needham K; Paolini AG
    Brain Res; 2007 Feb; 1134(1):113-21. PubMed ID: 17174943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input resistance is voltage dependent due to activation of Ih channels in rat CA1 pyramidal cells.
    Surges R; Freiman TM; Feuerstein TJ
    J Neurosci Res; 2004 May; 76(4):475-80. PubMed ID: 15114619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
    Pasic TR; Moore DR; Rubel EW
    J Comp Neurol; 1994 Oct; 348(1):111-20. PubMed ID: 7814680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.