BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19615884)

  • 1. Intervention of cardiomyocyte death based on real-time monitoring of cell adhesion through impedance sensing.
    Qiu Y; Liao R; Zhang X
    Biosens Bioelectron; 2009 Sep; 25(1):147-53. PubMed ID: 19615884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing.
    Qiu Y; Liao R; Zhang X
    Anal Chem; 2008 Feb; 80(4):990-6. PubMed ID: 18215019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervention of cardiomyocyte death based on the impedance-sensing technique of monitoring cell adhesion.
    Qiu Y; Liao R; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4457-60. PubMed ID: 19964632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel microfluidic impedance assay for monitoring endothelin-induced cardiomyocyte hypertrophy.
    Yang M; Lim CC; Liao R; Zhang X
    Biosens Bioelectron; 2007 Mar; 22(8):1688-93. PubMed ID: 16962309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance-based monitoring of ongoing cardiomyocyte death induced by tumor necrosis factor-alpha.
    Qiu Y; Liao R; Zhang X
    Biophys J; 2009 Mar; 96(5):1985-91. PubMed ID: 19254558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMP-activated protein kinase confers protection against TNF-{alpha}-induced cardiac cell death.
    Kewalramani G; Puthanveetil P; Wang F; Kim MS; Deppe S; Abrahani A; Luciani DS; Johnson JD; Rodrigues B
    Cardiovasc Res; 2009 Oct; 84(1):42-53. PubMed ID: 19477967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring viral-induced cell death using electric cell-substrate impedance sensing.
    Campbell CE; Laane MM; Haugarvoll E; Giaever I
    Biosens Bioelectron; 2007 Nov; 23(4):536-42. PubMed ID: 17826975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High spatial resolution impedance measurement of EIS sensors for light addressable cell adhesion monitoring.
    Yu H; Wang J; Liu Q; Zhang W; Cai H; Wang P
    Biosens Bioelectron; 2011 Feb; 26(6):2822-7. PubMed ID: 21196110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study.
    Hong J; Kandasamy K; Marimuthu M; Choi CS; Kim S
    Analyst; 2011 Jan; 136(2):237-45. PubMed ID: 20963234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS).
    Xiao C; Luong JH
    Biotechnol Prog; 2003; 19(3):1000-5. PubMed ID: 12790667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microelectrode-based sensor for label-free in vitro detection of ischemic effects on cardiomyocytes.
    Krinke D; Jahnke HG; Pänke O; Robitzki AA
    Biosens Bioelectron; 2009 May; 24(9):2798-803. PubMed ID: 19285854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time electrical impedance detection of cellular activities of oral cancer cells.
    Arias LR; Perry CA; Yang L
    Biosens Bioelectron; 2010 Jun; 25(10):2225-31. PubMed ID: 20304624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiomyocyte death and renewal in the normal and diseased heart.
    Buja LM; Vela D
    Cardiovasc Pathol; 2008; 17(6):349-74. PubMed ID: 18402842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model.
    Müller J; Thirion C; Pfaffl MW
    Biosens Bioelectron; 2011 Jan; 26(5):2000-5. PubMed ID: 20875729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A portable cell-based impedance sensor for toxicity testing of drinking water.
    Curtis TM; Widder MW; Brennan LM; Schwager SJ; van der Schalie WH; Fey J; Salazar N
    Lab Chip; 2009 Aug; 9(15):2176-83. PubMed ID: 19606294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time.
    McCoy MH; Wang E
    J Virol Methods; 2005 Dec; 130(1-2):157-61. PubMed ID: 16095727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap).
    Rahman AR; Register J; Vuppala G; Bhansali S
    Physiol Meas; 2008 Jun; 29(6):S227-39. PubMed ID: 18544796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
    Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA
    Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.