These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19616206)

  • 1. A simulation finite element model for the mechanics of the internal oblique muscle: a defense mechanism against inguinal hernia formation?
    Fortuny G; Rodríguez-Navarro J; Susín A; Armengol-Carrasco M; López-Cano M
    Comput Biol Med; 2009 Sep; 39(9):794-9. PubMed ID: 19616206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and study of the behaviour of the transversalis fascia in protecting against the genesis of inguinal hernias.
    Fortuny G; Rodríguez-Navarro J; Susín A; López-Cano M
    J Biomech; 2009 Oct; 42(14):2263-7. PubMed ID: 19665137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphincter-like motion following mechanical dilation of the internal inguinal ring during indirect inguinal hernia procedure.
    Amato G; Sciacchitano T; Bell SG; Romano G; Cocchiara G; Lo Monte AI; Romano M
    Hernia; 2009 Feb; 13(1):67-72. PubMed ID: 18937028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element simulation scheme for biological muscular hydrostats.
    Liang Y; McMeeking RM; Evans AG
    J Theor Biol; 2006 Sep; 242(1):142-50. PubMed ID: 16580021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Anatomo-surgical considerations on the inguinal region. I. The external oblique muscle].
    Lobello R; Abate S; Ferulano GP
    Arch Sci Med (Torino); 1979; 136(1):25-30. PubMed ID: 157114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Anatomy and mechanism of inguinal hernias].
    Flament JB; Avisse C; Delattre JF
    Rev Prat; 1997 Feb; 47(3):252-5. PubMed ID: 9122597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Anatomo-surgical considerations on the inguinal region. II. The internal oblique muscle and transverse muscle].
    Abate S; Ferulano GP; Lobello R
    Arch Sci Med (Torino); 1979; 136(1):31-6. PubMed ID: 157115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and study of the geometric parameters in the inguinal area and the genesis of inguinal hernias.
    Fortuny G; López-Cano M; Susín A; Herrera B
    Comput Methods Biomech Biomed Engin; 2012; 15(2):195-201. PubMed ID: 21442489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative efficiency of abdominal muscles in spine stability.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):291-9. PubMed ID: 18568826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery.
    Yucesoy CA; Huijing PA
    J Electromyogr Kinesiol; 2007 Dec; 17(6):664-79. PubMed ID: 17395489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional human trunk model for the analysis of respiratory mechanics.
    Behr M; Pérès J; Llari M; Godio Y; Jammes Y; Brunet C
    J Biomech Eng; 2010 Jan; 132(1):014501. PubMed ID: 20524749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-time dynamic 3D model of the human inguinal region for surgical education.
    López-Cano M; Rodríguez-Navarro J; Rodríguez-Baeza A; Armengol-Carrasco M; Susín A
    Comput Biol Med; 2007 Sep; 37(9):1321-6. PubMed ID: 17296175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases.
    Pato MP; Santos NJ; Areias P; Pires EB; de Carvalho M; Pinto S; Lopes DS
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):505-13. PubMed ID: 21082461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on biomechanics properties of occipito-atlantoaxial complex by finite element method].
    Meng C; Yang S; Wang P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1173-7. PubMed ID: 21089694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery.
    Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Martins JA
    J Biomech; 2009 Jun; 42(9):1301-6. PubMed ID: 19375709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis in functional morphology.
    Richmond BG; Wright BW; Grosse I; Dechow PC; Ross CF; Spencer MA; Strait DS
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):259-74. PubMed ID: 15747355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: a finite element framework.
    Fernandez JW; Buist ML; Nickerson DP; Hunter PJ
    Med Eng Phys; 2005 Dec; 27(10):862-70. PubMed ID: 15869895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic finite element model of the lower limb.
    Behr M; Arnoux PJ; Serre T; Thollon L; Brunet C
    J Biomech Eng; 2006 Apr; 128(2):223-8. PubMed ID: 16524334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.