These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Brain Age Prediction With Improved Least Squares Twin SVR. Ganaie MA; Tanveer M; Beheshti I IEEE J Biomed Health Inform; 2023 Apr; 27(4):1661-1669. PubMed ID: 35104233 [TBL] [Abstract][Full Text] [Related]
5. Robust support vector regression in the primal. Zhao Y; Sun J Neural Netw; 2008 Dec; 21(10):1548-55. PubMed ID: 18829255 [TBL] [Abstract][Full Text] [Related]
6. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis. Van Gestel T; Suykens JA; Lanckriet G; Lambrechts A; De Moor B; Vandewalle J Neural Comput; 2002 May; 14(5):1115-47. PubMed ID: 11972910 [TBL] [Abstract][Full Text] [Related]
7. Multi-output parameter-insensitive kernel twin SVR model. Li Y; Sun H; Yan W; Zhang X Neural Netw; 2020 Jan; 121():276-293. PubMed ID: 31586856 [TBL] [Abstract][Full Text] [Related]
8. An SMO algorithm for the potential support vector machine. Knebel T; Hochreiter S; Obermayer K Neural Comput; 2008 Jan; 20(1):271-87. PubMed ID: 18045009 [TBL] [Abstract][Full Text] [Related]
10. Low rank updated LS-SVM classifiers for fast variable selection. Ojeda F; Suykens JA; De Moor B Neural Netw; 2008; 21(2-3):437-49. PubMed ID: 18343309 [TBL] [Abstract][Full Text] [Related]
11. Nonparallel support vector regression model and its SMO-type solver. Tang L; Tian Y; Yang C Neural Netw; 2018 Sep; 105():431-446. PubMed ID: 29945062 [TBL] [Abstract][Full Text] [Related]
12. A coordinate descent margin based-twin support vector machine for classification. Shao YH; Deng NY Neural Netw; 2012 Jan; 25(1):114-21. PubMed ID: 21890319 [TBL] [Abstract][Full Text] [Related]
13. Weighted twin support vector machines with local information and its application. Ye Q; Zhao C; Gao S; Zheng H Neural Netw; 2012 Nov; 35():31-9. PubMed ID: 22944307 [TBL] [Abstract][Full Text] [Related]
14. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Van Belle V; Pelckmans K; Van Huffel S; Suykens JA Artif Intell Med; 2011 Oct; 53(2):107-18. PubMed ID: 21821401 [TBL] [Abstract][Full Text] [Related]
15. A fast algorithm for AR parameter estimation using a novel noise-constrained least-squares method. Xia Y; Kamel MS; Leung H Neural Netw; 2010 Apr; 23(3):396-405. PubMed ID: 20005072 [TBL] [Abstract][Full Text] [Related]
16. Machine learning approach to color constancy. Agarwal V; Gribok AV; Abidi MA Neural Netw; 2007 Jul; 20(5):559-63. PubMed ID: 17624727 [TBL] [Abstract][Full Text] [Related]
17. New support vector-based design method for binary hierarchical classifiers for multi-class classification problems. Wang YC; Casasent D Neural Netw; 2008; 21(2-3):502-10. PubMed ID: 18187285 [TBL] [Abstract][Full Text] [Related]
18. On Regularization Based Twin Support Vector Regression with Huber Loss. Gupta U; Gupta D Neural Process Lett; 2021; 53(1):459-515. PubMed ID: 33424418 [TBL] [Abstract][Full Text] [Related]
19. Sparse kernel learning with LASSO and Bayesian inference algorithm. Gao J; Kwan PW; Shi D Neural Netw; 2010 Mar; 23(2):257-64. PubMed ID: 19604671 [TBL] [Abstract][Full Text] [Related]
20. Maximum Margin of Twin Spheres Support Vector Machine for Imbalanced Data Classification. Xu Y IEEE Trans Cybern; 2017 Jun; 47(6):1540-1550. PubMed ID: 27116760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]