These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 19616578)
1. RAGE, vascular tone and vascular disease. Farmer DG; Kennedy S Pharmacol Ther; 2009 Nov; 124(2):185-94. PubMed ID: 19616578 [TBL] [Abstract][Full Text] [Related]
2. The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond. Ramasamy R; Yan SF; Schmidt AM Trends Cardiovasc Med; 2005 Oct; 15(7):237-43. PubMed ID: 16226677 [TBL] [Abstract][Full Text] [Related]
3. The AGE/RAGE axis in diabetes-accelerated atherosclerosis. Jandeleit-Dahm K; Watson A; Soro-Paavonen A Clin Exp Pharmacol Physiol; 2008 Mar; 35(3):329-34. PubMed ID: 18290873 [TBL] [Abstract][Full Text] [Related]
4. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways. Liu XP; Pang YJ; Zhu WW; Zhao TT; Zheng M; Wang YB; Sun ZJ; Sun SJ Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):287-96. PubMed ID: 19018797 [TBL] [Abstract][Full Text] [Related]
5. Receptor for Advanced Glycation Endproducts (RAGE): a formidable force in the pathogenesis of the cardiovascular complications of diabetes & aging. Yan SF; D'Agati V; Schmidt AM; Ramasamy R Curr Mol Med; 2007 Dec; 7(8):699-710. PubMed ID: 18331228 [TBL] [Abstract][Full Text] [Related]
6. Advanced glycation end products: sparking the development of diabetic vascular injury. Goldin A; Beckman JA; Schmidt AM; Creager MA Circulation; 2006 Aug; 114(6):597-605. PubMed ID: 16894049 [TBL] [Abstract][Full Text] [Related]
7. Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Kim W; Hudson BI; Moser B; Guo J; Rong LL; Lu Y; Qu W; Lalla E; Lerner S; Chen Y; Yan SS; D'Agati V; Naka Y; Ramasamy R; Herold K; Yan SF; Schmidt AM Ann N Y Acad Sci; 2005 Jun; 1043():553-61. PubMed ID: 16037278 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Yan SF; Ramasamy R; Schmidt AM Nat Clin Pract Endocrinol Metab; 2008 May; 4(5):285-93. PubMed ID: 18332897 [TBL] [Abstract][Full Text] [Related]
9. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Basta G; Lazzerini G; Del Turco S; Ratto GM; Schmidt AM; De Caterina R Arterioscler Thromb Vasc Biol; 2005 Jul; 25(7):1401-7. PubMed ID: 15845907 [TBL] [Abstract][Full Text] [Related]
10. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Thornalley PJ Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1013-23. PubMed ID: 9846883 [TBL] [Abstract][Full Text] [Related]
11. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. Tanikawa T; Okada Y; Tanikawa R; Tanaka Y J Vasc Res; 2009; 46(6):572-80. PubMed ID: 19571577 [TBL] [Abstract][Full Text] [Related]
12. Advanced glycation and endothelial functions: a link towards vascular complications in diabetes. Rojas A; Morales MA Life Sci; 2004 Dec; 76(7):715-30. PubMed ID: 15581904 [TBL] [Abstract][Full Text] [Related]
14. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. Ihara Y; Egashira K; Nakano K; Ohtani K; Kubo M; Koga J; Iwai M; Horiuchi M; Gang Z; Yamagishi S; Sunagawa K J Mol Cell Cardiol; 2007 Oct; 43(4):455-64. PubMed ID: 17761193 [TBL] [Abstract][Full Text] [Related]
15. Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes. Gu L; Hagiwara S; Fan Q; Tanimoto M; Kobata M; Yamashita M; Nishitani T; Gohda T; Ni Z; Qian J; Horikoshi S; Tomino Y Nephrol Dial Transplant; 2006 Feb; 21(2):299-313. PubMed ID: 16263740 [TBL] [Abstract][Full Text] [Related]
16. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Yonekura H; Yamamoto Y; Sakurai S; Petrova RG; Abedin MJ; Li H; Yasui K; Takeuchi M; Makita Z; Takasawa S; Okamoto H; Watanabe T; Yamamoto H Biochem J; 2003 Mar; 370(Pt 3):1097-109. PubMed ID: 12495433 [TBL] [Abstract][Full Text] [Related]
17. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Yan SF; Ramasamy R; Naka Y; Schmidt AM Circ Res; 2003 Dec; 93(12):1159-69. PubMed ID: 14670831 [TBL] [Abstract][Full Text] [Related]
18. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice. Sun L; Ishida T; Yasuda T; Kojima Y; Honjo T; Yamamoto Y; Yamamoto H; Ishibashi S; Hirata K; Hayashi Y Cardiovasc Res; 2009 May; 82(2):371-81. PubMed ID: 19176597 [TBL] [Abstract][Full Text] [Related]
19. RAGE ligand upregulation of VEGF secretion in ARPE-19 cells. Ma W; Lee SE; Guo J; Qu W; Hudson BI; Schmidt AM; Barile GR Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1355-61. PubMed ID: 17325184 [TBL] [Abstract][Full Text] [Related]
20. The RAGE pathway in inflammatory myopathies and limb girdle muscular dystrophy. Haslbeck KM; Friess U; Schleicher ED; Bierhaus A; Nawroth PP; Kirchner A; Pauli E; Neundörfer B; Heuss D Acta Neuropathol; 2005 Sep; 110(3):247-54. PubMed ID: 15986224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]