BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19616819)

  • 1. Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics.
    Powell N; Shilton A; Chisti Y; Pratt S
    Water Res; 2009 Sep; 43(17):4207-13. PubMed ID: 19616819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds.
    Powell N; Shilton AN; Pratt S; Chisti Y
    Environ Sci Technol; 2008 Aug; 42(16):5958-62. PubMed ID: 18767651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(4):704-9. PubMed ID: 21330717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(8):1689-94. PubMed ID: 21866769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining variables that influence the phosphorus content of waste stabilization pond algae.
    Sells MD; Brown N; Shilton AN
    Water Res; 2018 Apr; 132():301-308. PubMed ID: 29334649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
    Barat R; Montoya T; Borrás L; Ferrer J; Seco A
    Water Res; 2008 Jul; 42(13):3415-24. PubMed ID: 18538819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting phosphorus accumulation and proposing conditions needed for an algal-based phosphorus uptake process.
    Brown N; Sells M; Jayamaha N; Shilton A
    Environ Technol; 2023 Sep; ():1-11. PubMed ID: 37642365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algal-bacterial processes for the treatment of hazardous contaminants: a review.
    Muñoz R; Guieysse B
    Water Res; 2006 Aug; 40(15):2799-815. PubMed ID: 16889814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of polyphosphate metabolism to environmental and biotechnological problems.
    Keasling JD; Van Dien SJ; Trelstad P; Renninger N; McMahon K
    Biochemistry (Mosc); 2000 Mar; 65(3):324-31. PubMed ID: 10739475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgal luxury uptake of phosphorus in waste stabilization ponds - frequency of occurrence and high performing genera.
    Crimp A; Brown N; Shilton A
    Water Sci Technol; 2018 Aug; 78(1-2):165-173. PubMed ID: 30101799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Polyphosphate Degradation in
    Ryu HB; Kang MJ; Choi KM; Yang IK; Hong SJ; Lee CG
    J Microbiol Biotechnol; 2024 Feb; 34(2):407-414. PubMed ID: 38247220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the Interplay between the Uptake of Inorganic Phosphate and the Cell Phosphate Metabolism under Phosphorus Feast and Famine Conditions in
    Plyusnina TY; Khruschev SS; Fursova PV; Solovchenko AE; Antal TK; Riznichenko GY; Rubin AB
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luxury consumption of phosphorus by five Cladophora epiphytes in Lake Huron.
    Stevenson RJ; Stoermer EF
    Trans Am Microsc Soc; 1982 Apr; 101(2):151-61. PubMed ID: 7135703
    [No Abstract]   [Full Text] [Related]  

  • 14. Biological Phosphorus Recovery: Review of Current Progress and Future Needs.
    Yang Y; Shi X; Ballent W; Mayer BK
    Water Environ Res; 2017 Dec; 89(12):2122-2135. PubMed ID: 29166994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus from wastewater to crops: An alternative path involving microalgae.
    Solovchenko A; Verschoor AM; Jablonowski ND; Nedbal L
    Biotechnol Adv; 2016; 34(5):550-564. PubMed ID: 26795876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Polyphosphate in Microalgae by Raman Microscopy and by a Reference Enzymatic Assay.
    Moudříková Š; Sadowsky A; Metzger S; Nedbal L; Mettler-Altmann T; Mojzeš P
    Anal Chem; 2017 Nov; 89(22):12006-12013. PubMed ID: 29099580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae.
    Vagabov VM; Trilisenko LV; Kulakovskaya TV; Kulaev IS
    FEMS Yeast Res; 2008 Sep; 8(6):877-82. PubMed ID: 18647178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate uptake kinetics by Acinetobacter isolates.
    Pauli AS; Kaitala S
    Biotechnol Bioeng; 1997 Feb; 53(3):304-9. PubMed ID: 18633985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial phylogenetic and functional responses within acidified wastewater communities exhibiting enhanced phosphate uptake.
    Weerasekara AW; Jenkins S; Abbott LK; Waite I; McGrath JW; Larma I; Eroglu E; O'Donnell A; Whiteley AS
    Bioresour Technol; 2016 Nov; 220():55-61. PubMed ID: 27566512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic polyphosphate metabolism in cyanobacteria responding to phosphorus availability.
    Li J; Dittrich M
    Environ Microbiol; 2019 Feb; 21(2):572-583. PubMed ID: 30474918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.