These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1961683)

  • 1. Adrenaline inhibition of insulin release: role of the repolarization of the B cell membrane.
    Debuyser A; Drews G; Henquin JC
    Pflugers Arch; 1991 Sep; 419(2):131-7. PubMed ID: 1961683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of membrane repolarization and cyclic AMP changes in mouse pancreatic B-cells for the inhibition of insulin release by galanin.
    Drews G; Debuyser A; Henquin JC
    Mol Cell Endocrinol; 1994 Oct; 105(1):97-102. PubMed ID: 7529734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-additivity of adrenaline and galanin effects on 86Rb efflux and membrane potential in mouse B-cells suggests sharing of common targets.
    Drews G; Detimary P; Henquin JC
    Biochim Biophys Acta; 1993 Jan; 1175(2):214-8. PubMed ID: 7678199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 9-Aminoacridine- and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties.
    Henquin JC; Meissner HP; Preissler M
    Biochim Biophys Acta; 1979 Nov; 587(4):579-92. PubMed ID: 389293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenaline-, not somatostatin-induced hyperpolarization is accompanied by a sustained inhibition of insulin secretion in INS-1 cells. Activation of sulphonylurea K+ATP channels is not involved.
    Abel KB; Lehr S; Ullrich S
    Pflugers Arch; 1996 May; 432(1):89-96. PubMed ID: 8662272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane.
    Drews G; Debuyser A; Nenquin M; Henquin JC
    Endocrinology; 1990 Mar; 126(3):1646-53. PubMed ID: 1689655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenaline inhibition of insulin release: role of cyclic AMP.
    Debuyser A; Drews G; Henquin JC
    Mol Cell Endocrinol; 1991 Jul; 78(3):179-86. PubMed ID: 1663876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets.
    Jonas JC; Plant TD; Gilon P; Detimary P; Nenquin M; Henquin JC
    Br J Pharmacol; 1995 Feb; 114(4):872-80. PubMed ID: 7773549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells.
    Henquin JC; Meissner HP
    Biochem Pharmacol; 1982 Apr; 31(7):1407-15. PubMed ID: 7046755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the inhibition of insulin release by activation of adenosine and alpha 2-adrenergic receptors in rat beta-cells.
    Bertrand G; Nenquin M; Henquin JC
    Biochem J; 1989 Apr; 259(1):223-8. PubMed ID: 2470346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permissive effect of glucose, tolbutamide and high K+ on arginine stimulation of insulin release in isolated mouse islets.
    Hermans MP; Schmeer W; Henquin JC
    Diabetologia; 1987 Aug; 30(8):659-65. PubMed ID: 3308605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two sites of glucose control of insulin release with distinct dependence on the energy state in pancreatic B-cells.
    Detimary P; Gilon P; Nenquin M; Henquin JC
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):455-61. PubMed ID: 8110181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride modulation of insulin release, 86Rb+ efflux, and 45Ca2+ fluxes in rat islets stimulated by various secretagogues.
    Tamagawa T; Henquin JC
    Diabetes; 1983 May; 32(5):416-23. PubMed ID: 6341124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells.
    Hermans MP; Schmeer W; Henquin JC
    Endocrinology; 1987 May; 120(5):1765-73. PubMed ID: 3552623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epinephrine modifications of insulin release and of 86Rb+ or 45Ca2+ fluxes in rat islets.
    Tamagawa T; Henquin JC
    Am J Physiol; 1983 Mar; 244(3):E245-52. PubMed ID: 6338738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of voltage- and Ca2(+)-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells.
    Henquin JC
    Pflugers Arch; 1990 Jul; 416(5):568-72. PubMed ID: 2235297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adrenaline and tolbutamide on insulin secretion in INS-1 cells under voltage control.
    Kampermann J; Herbst M; Ullrich S
    Cell Physiol Biochem; 2000; 10(1-2):81-90. PubMed ID: 10844399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells.
    Rorsman P; Bokvist K; Ammälä C; Arkhammar P; Berggren PO; Larsson O; Wåhlander K
    Nature; 1991 Jan; 349(6304):77-9. PubMed ID: 1898674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparteine increases insulin release by decreasing the K+ permeability of the B-cell membrane.
    Paolisso G; Nenquin M; Schmeer W; Mathot F; Meissner HP; Henquin JC
    Biochem Pharmacol; 1985 Jul; 34(13):2355-61. PubMed ID: 3893438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of cesium chloride on insulin release, ionic fluxes and membrane potential in pancreatic B-cells.
    Paolisso G; Nenquin M; Meissner HP; Henquin JC
    Biochim Biophys Acta; 1985 Feb; 844(2):200-8. PubMed ID: 3882155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.