These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 19616918)

  • 1. Time series modeling by a regression approach based on a latent process.
    Chamroukhi F; Samé A; Govaert G; Aknin P
    Neural Netw; 2009; 22(5-6):593-602. PubMed ID: 19616918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A constraint-based evolutionary learning approach to the expectation maximization for optimal estimation of the hidden Markov model for speech signal modeling.
    Huda S; Yearwood J; Togneri R
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):182-97. PubMed ID: 19068441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust sequential data modeling using an outlier tolerant hidden Markov model.
    Chatzis SP; Kosmopoulos DI; Varvarigou TA
    IEEE Trans Pattern Anal Mach Intell; 2009 Sep; 31(9):1657-69. PubMed ID: 19574625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A class of latent Markov models for capture-recapture data allowing for time, heterogeneity, and behavior effects.
    Bartolucci F; Pennoni F
    Biometrics; 2007 Jun; 63(2):568-78. PubMed ID: 17688509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences.
    Chung SH; Krishnamurthy V; Moore JB
    Philos Trans R Soc Lond B Biol Sci; 1991 Dec; 334(1271):357-84. PubMed ID: 1723807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factorial hidden Markov models and the generalized backfitting algorithm.
    Jacobs RA; Jiang W; Tanner MA
    Neural Comput; 2002 Oct; 14(10):2415-37. PubMed ID: 12396569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic dynamic modeling of short gene expression time-series data.
    Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online learning with hidden markov models.
    Mongillo G; Deneve S
    Neural Comput; 2008 Jul; 20(7):1706-16. PubMed ID: 18254694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary tree reconstruction using structural expectation maximization and homotopy.
    Li J; Guo M
    Genet Mol Res; 2007 Sep; 6(3):522-33. PubMed ID: 17985305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression analysis of failure time data with informative interval censoring.
    Zhang Z; Sun L; Sun J; Finkelstein DM
    Stat Med; 2007 May; 26(12):2533-46. PubMed ID: 17072823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian adjustment for covariate measurement errors: a flexible parametric approach.
    Hossain S; Gustafson P
    Stat Med; 2009 May; 28(11):1580-600. PubMed ID: 19226564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRUST-TECH-based expectation maximization for learning finite mixture models.
    Reddy CK; Chiang HD; Rajaratnam B
    IEEE Trans Pattern Anal Mach Intell; 2008 Jul; 30(7):1146-57. PubMed ID: 18550899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to cardiac arrhythmia analysis using hidden Markov models.
    Coast DA; Stern RM; Cano GG; Briller SA
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):826-36. PubMed ID: 2227969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.
    Ng SK; McLachlan GJ
    Stat Med; 2003 Apr; 22(7):1097-111. PubMed ID: 12652556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A frailty model approach for regression analysis of multivariate current status data.
    Chen MH; Tong X; Sun J
    Stat Med; 2009 Nov; 28(27):3424-36. PubMed ID: 19739240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating a state-space model from point process observations.
    Smith AC; Brown EN
    Neural Comput; 2003 May; 15(5):965-91. PubMed ID: 12803953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.
    Fisz JJ
    J Phys Chem A; 2006 Dec; 110(48):12977-85. PubMed ID: 17134156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact likelihood evaluation in a Markov mixture model for time series of seizure counts.
    Le ND; Leroux BG; Puterman ML
    Biometrics; 1992 Mar; 48(1):317-23. PubMed ID: 1581489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-state Markov mixture model for a time series of epileptic seizure counts.
    Albert PS
    Biometrics; 1991 Dec; 47(4):1371-81. PubMed ID: 1786324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superresolution with compound Markov random fields via the variational EM algorithm.
    Kanemura A; Maeda S; Ishii S
    Neural Netw; 2009 Sep; 22(7):1025-34. PubMed ID: 19157777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.