These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 19617406)

  • 1. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.
    Yokota T; Kinugawa S; Hirabayashi K; Matsushima S; Inoue N; Ohta Y; Hamaguchi S; Sobirin MA; Ono T; Suga T; Kuroda S; Tanaka S; Terasaki F; Okita K; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H1069-77. PubMed ID: 19617406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II-induced reduction in exercise capacity is associated with increased oxidative stress in skeletal muscle.
    Inoue N; Kinugawa S; Suga T; Yokota T; Hirabayashi K; Kuroda S; Okita K; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1202-10. PubMed ID: 22210751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sesamin prevents decline in exercise capacity and impairment of skeletal muscle mitochondrial function in mice with high-fat diet-induced diabetes.
    Takada S; Kinugawa S; Matsushima S; Takemoto D; Furihata T; Mizushima W; Fukushima A; Yokota T; Ono Y; Shibata H; Okita K; Tsutsui H
    Exp Physiol; 2015 Nov; 100(11):1319-30. PubMed ID: 26300535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pioglitazone ameliorates the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.
    Takada S; Hirabayashi K; Kinugawa S; Yokota T; Matsushima S; Suga T; Kadoguchi T; Fukushima A; Homma T; Mizushima W; Masaki Y; Furihata T; Katsuyama R; Okita K; Tsutsui H
    Eur J Pharmacol; 2014 Oct; 740():690-6. PubMed ID: 24964389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.
    Takada S; Kinugawa S; Hirabayashi K; Suga T; Yokota T; Takahashi M; Fukushima A; Homma T; Ono T; Sobirin MA; Masaki Y; Mizushima W; Kadoguchi T; Okita K; Tsutsui H
    J Appl Physiol (1985); 2013 Apr; 114(7):844-57. PubMed ID: 23329824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor for advanced glycation end products modulates oxidative stress and mitochondrial function in the soleus muscle of mice fed a high-fat diet.
    Velayoudom-Cephise FL; Cano-Sanchez M; Bercion S; Tessier F; Yu Y; Boulanger E; Neviere R
    Appl Physiol Nutr Metab; 2020 Oct; 45(10):1107-1117. PubMed ID: 32289236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.
    Suga T; Kinugawa S; Takada S; Kadoguchi T; Fukushima A; Homma T; Masaki Y; Furihata T; Takahashi M; Sobirin MA; Ono T; Hirabayashi K; Yokota T; Tanaka S; Okita K; Tsutsui H
    Endocrinology; 2014 Jan; 155(1):68-80. PubMed ID: 24189138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.
    Hoeks J; Wilde Jd; Hulshof MF; Berg SA; Schaart G; Dijk KW; Smit E; Mariman EC
    PLoS One; 2011; 6(11):e27274. PubMed ID: 22140436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction and inhibition of myoblast differentiation in mice with high-fat-diet-induced pre-diabetes.
    Xu D; Jiang Z; Sun Z; Wang L; Zhao G; Hassan HM; Fan S; Zhou W; Han S; Zhang L; Wang T
    J Cell Physiol; 2019 May; 234(5):7510-7523. PubMed ID: 30362548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in postinfarct heart failure.
    Ohta Y; Kinugawa S; Matsushima S; Ono T; Sobirin MA; Inoue N; Yokota T; Hirabayashi K; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1637-44. PubMed ID: 21335475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle.
    Skovbro M; Boushel R; Hansen CN; Helge JW; Dela F
    J Appl Physiol (1985); 2011 Jun; 110(6):1607-14. PubMed ID: 21415171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes.
    Matsushima S; Kinugawa S; Yokota T; Inoue N; Ohta Y; Hamaguchi S; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H409-16. PubMed ID: 19465539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional knockout of Mn-SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity.
    Lustgarten MS; Jang YC; Liu Y; Muller FL; Qi W; Steinhelper M; Brooks SV; Larkin L; Shimizu T; Shirasawa T; McManus LM; Bhattacharya A; Richardson A; Van Remmen H
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1520-32. PubMed ID: 19776389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moderate aerobic exercise training ameliorates impairment of mitochondrial function and dynamics in skeletal muscle of high-fat diet-induced obese mice.
    Heo JW; No MH; Cho J; Choi Y; Cho EJ; Park DH; Kim TW; Kim CJ; Seo DY; Han J; Jang YC; Jung SJ; Kang JH; Kwak HB
    FASEB J; 2021 Feb; 35(2):e21340. PubMed ID: 33455027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-Term High-Fat Feeding Does Not Alter Mitochondrial Lipid Respiratory Capacity but Triggers Mitophagy Response in Skeletal Muscle of Mice.
    Ehrlicher SE; Stierwalt HD; Newsom SA; Robinson MM
    Front Endocrinol (Lausanne); 2021; 12():651211. PubMed ID: 33868178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress.
    Nishikawa M; Ishimori N; Takada S; Saito A; Kadoguchi T; Furihata T; Fukushima A; Matsushima S; Yokota T; Kinugawa S; Tsutsui H
    Nephrol Dial Transplant; 2015 Jun; 30(6):934-42. PubMed ID: 25878055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance.
    Henstridge DC; Bruce CR; Drew BG; Tory K; Kolonics A; Estevez E; Chung J; Watson N; Gardner T; Lee-Young RS; Connor T; Watt MJ; Carpenter K; Hargreaves M; McGee SL; Hevener AL; Febbraio MA
    Diabetes; 2014 Jun; 63(6):1881-94. PubMed ID: 24430435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
    Bonnard C; Durand A; Peyrol S; Chanseaume E; Chauvin MA; Morio B; Vidal H; Rieusset J
    J Clin Invest; 2008 Feb; 118(2):789-800. PubMed ID: 18188455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes.
    Holmström MH; Iglesias-Gutierrez E; Zierath JR; Garcia-Roves PM
    Am J Physiol Endocrinol Metab; 2012 Mar; 302(6):E731-9. PubMed ID: 22252943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice.
    Paglialunga S; van Bree B; Bosma M; Valdecantos MP; Amengual-Cladera E; Jörgensen JA; van Beurden D; den Hartog GJM; Ouwens DM; Briedé JJ; Schrauwen P; Hoeks J
    Diabetologia; 2012 Oct; 55(10):2759-2768. PubMed ID: 22782287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.