These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 1961743)

  • 21. Angiotensin II increases catecholamine release from bovine adrenal medulla but does not enhance that evoked by K+ depolarization or by carbachol.
    Powis DA; O'Brien KJ
    J Neurochem; 1991 Nov; 57(5):1461-9. PubMed ID: 1919569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracellular ionic composition alters kinetics of vesicular release of catecholamines and quantal size during exocytosis at adrenal medullary cells.
    Jankowski JA; Finnegan JM; Wightman RM
    J Neurochem; 1994 Nov; 63(5):1739-47. PubMed ID: 7931329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of quinidine on catecholamine release from adrenal medulla.
    Kashimoto T; Izumi F; Wada A; Miyashita T; Oka M
    Res Commun Chem Pathol Pharmacol; 1979 Mar; 23(3):475-82. PubMed ID: 461971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The inhibition by pertussis and tetanus toxins of evoked catecholamine release from intact and permeabilized bovine adrenal chromaffin cells.
    Bansal MK; Phillips JH; van Heyningen S
    FEBS Lett; 1990 Dec; 276(1-2):165-8. PubMed ID: 2265696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Desensitization to nicotinic cholinergic agonists and K+, agents that stimulate catecholamine secretion, in isolated adrenal chromaffin cells.
    Boksa P; Livett BG
    J Neurochem; 1984 Mar; 42(3):607-17. PubMed ID: 6693891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature effects in the stimulus-secretion process from isolated chromaffin cells.
    Hiram Y; Nir A; Greenberg A; Zinder O
    Biophys J; 1984 Apr; 45(4):651-8. PubMed ID: 6426538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells.
    Phillips JH; Burridge K; Wilson SP; Kirshner N
    J Cell Biol; 1983 Dec; 97(6):1906-17. PubMed ID: 6643581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effect of okadaic acid on carbachol-evoked secretion of catecholamines in cultured bovine adrenal medullary cells.
    Yanagihara N; Toyohira Y; Koda Y; Wada A; Izumi F
    Biochem Biophys Res Commun; 1991 Jan; 174(1):77-83. PubMed ID: 1989622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells.
    Chow RH; von Rüden L; Neher E
    Nature; 1992 Mar; 356(6364):60-3. PubMed ID: 1538782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between secretion and intracellular free calcium in bovine adrenal chromaffin cells.
    Burgoyne RD
    Biosci Rep; 1984 Jul; 4(7):605-11. PubMed ID: 6434000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different osmotic stability of two storage pools of adrenomedullary catecholamines: possible relevance to exocytotic release of the hormones.
    Serck-Hanssen G
    Acta Physiol Scand; 1984 Jan; 120(1):137-40. PubMed ID: 6720322
    [No Abstract]   [Full Text] [Related]  

  • 32. Alpha 2-adrenoceptors do not regulate catecholamine secretion by bovine adrenal medullary cells: a study with clonidine.
    Powis DA; Baker PF
    Mol Pharmacol; 1986 Feb; 29(2):134-41. PubMed ID: 2869403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of muscle relaxants on catecholamine release from adrenal medulla.
    Sumikawa K; Kashimoto T; Izumi F; Yoshikawa K; Amakata Y
    Res Commun Chem Pathol Pharmacol; 1979 Aug; 25(2):205-14. PubMed ID: 493712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA.
    Parmer RJ; Mahata M; Mahata S; Sebald MT; O'Connor DT; Miles LA
    J Biol Chem; 1997 Jan; 272(3):1976-82. PubMed ID: 8999889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pertussis-toxin-sensitive protein controls exocytosis in chromaffin cells at a step distal to the generation of second messengers.
    Sontag JM; Thierse D; Rouot B; Aunis D; Bader MF
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):339-47. PubMed ID: 1848752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential regulation of multiple populations of granules in rat adrenal chromaffin cells by culture duration and cyclic AMP.
    Tang KS; Tse A; Tse FW
    J Neurochem; 2005 Mar; 92(5):1126-39. PubMed ID: 15715663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative analysis of exocytosis directly visualized in living chromaffin cells.
    Terakawa S; Fan JH; Kumakura K; Ohara-Imaizumi M
    Neurosci Lett; 1991 Feb; 123(1):82-6. PubMed ID: 2062457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between amperometric pre-spike feet and secretion granule composition in chromaffin cells: an overview.
    Amatore C; Arbault S; Bonifas I; Guille M; Lemaître F; Verchier Y
    Biophys Chem; 2007 Sep; 129(2-3):181-9. PubMed ID: 17587484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GABAA and GABAB receptors are functionally active in the regulation of catecholamine secretion by bovine chromaffin cells.
    Castro E; Oset-Gasque MJ; González MP
    J Neurosci Res; 1989 Jul; 23(3):290-6. PubMed ID: 2549264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced cAMP production mediates the stimulatory action of pituitary adenylate cyclase activating polypeptide (PACAP) on in vitro catecholamine secretion from bovine adrenal chromaffin cells.
    Perrin D; Germeshausen A; Söling HD; Wuttke W; Jarry H
    Exp Clin Endocrinol Diabetes; 1995; 103(2):81-7. PubMed ID: 7553079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.