These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19617437)

  • 1. Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Lipinski D; Mohseni K
    J Exp Biol; 2009 Aug; 212(Pt 15):2436-47. PubMed ID: 19617437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Sahin M; Mohseni K; Colin SP
    J Exp Biol; 2009 Aug; 212(Pt 16):2656-67. PubMed ID: 19648411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying and modeling motion primitives for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Sledge I; Krieg M; Lipinski D; Mohseni K
    Bioinspir Biomim; 2015 Oct; 10(6):066001. PubMed ID: 26495992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake.
    Dabiri JO; Colin SP; Costello JH
    J Exp Biol; 2006 Jun; 209(Pt 11):2025-33. PubMed ID: 16709905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of swimming in the hydrozoan jellyfish Aequorea victoria: subumbrellar organization and local inhibition.
    Satterlie RA
    J Exp Biol; 2008 Nov; 211(Pt 21):3467-77. PubMed ID: 18931319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses.
    Dabiri JO; Colin SP; Costello JH; Gharib M
    J Exp Biol; 2005 Apr; 208(Pt 7):1257-65. PubMed ID: 15781886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae.
    Colin SP; Costello JH
    J Exp Biol; 2002 Feb; 205(Pt 3):427-37. PubMed ID: 11854379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish.
    Santhanakrishnan A; Dollinger M; Hamlet CL; Colin SP; Miller LA
    J Exp Biol; 2012 Jul; 215(Pt 14):2369-81. PubMed ID: 22723475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures.
    Lipinski D; Mohseni K
    Chaos; 2010 Mar; 20(1):017504. PubMed ID: 20370294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish
    Neil TR; Askew GN
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.
    Tytell ED
    J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hydrodynamics of eel swimming II. Effect of swimming speed.
    Tytell ED
    J Exp Biol; 2004 Sep; 207(Pt 19):3265-79. PubMed ID: 15326203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the estimation of swimming and flying forces from wake measurements.
    Dabiri JO
    J Exp Biol; 2005 Sep; 208(Pt 18):3519-32. PubMed ID: 16155224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 May; 212(Pt 10):1506-18. PubMed ID: 19411544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of surface swimming in leopard frogs (Rana pipiens).
    Johansson LC; Lauder GV
    J Exp Biol; 2004 Oct; 207(Pt 22):3945-58. PubMed ID: 15472025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A formulation for calculating the translational velocity of a vortex ring or pair.
    Mohseni K
    Bioinspir Biomim; 2006 Dec; 1(4):S57-64. PubMed ID: 17671319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.