These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 19617442)
1. Thermodynamic modelling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic. Fort J; Porter WP; Grémillet D J Exp Biol; 2009 Aug; 212(Pt 15):2483-90. PubMed ID: 19617442 [TBL] [Abstract][Full Text] [Related]
2. Energetic modelling: a comparison of the different approaches used in seabirds. Fort J; Porter WP; Grémillet D Comp Biochem Physiol A Mol Integr Physiol; 2011 Mar; 158(3):358-65. PubMed ID: 20471488 [TBL] [Abstract][Full Text] [Related]
3. Mercury in wintering seabirds, an aggravating factor to winter wrecks? Fort J; Lacoue-Labarthe T; Nguyen HL; Boué A; Spitz J; Bustamante P Sci Total Environ; 2015 Sep; 527-528():448-54. PubMed ID: 25984703 [TBL] [Abstract][Full Text] [Related]
4. Year-round recordings of behavioural and physiological parameters reveal the survival strategy of a poorly insulated diving endotherm during the Arctic winter. Grémillet D; Kuntz G; Woakes AJ; Gilbert C; Robin JP; Le Maho Y; Butler PJ J Exp Biol; 2005 Nov; 208(Pt 22):4231-41. PubMed ID: 16272246 [TBL] [Abstract][Full Text] [Related]
5. The feeding ecology of little auks raises questions about winter zooplankton stocks in North Atlantic surface waters. Fort J; Cherel Y; Harding AM; Egevang C; Steen H; Kuntz G; Porter WP; Grémillet D Biol Lett; 2010 Oct; 6(5):682-4. PubMed ID: 20236962 [TBL] [Abstract][Full Text] [Related]
6. North Atlantic winter cyclones starve seabirds. Clairbaux M; Mathewson P; Porter W; Fort J; Strøm H; Moe B; Fauchald P; Descamps S; Helgason HH; Bråthen VS; Merkel B; Anker-Nilssen T; Bringsvor IS; Chastel O; Christensen-Dalsgaard S; Danielsen J; Daunt F; Dehnhard N; Erikstad KE; Ezhov A; Gavrilo M; Krasnov Y; Langset M; Lorentsen SH; Newell M; Olsen B; Reiertsen TK; Systad GH; Thórarinsson TL; Baran M; Diamond T; Fayet AL; Fitzsimmons MG; Frederiksen M; Gilchrist HG; Guilford T; Huffeldt NP; Jessopp M; Johansen KL; Kouwenberg AL; Linnebjerg JF; Major HL; Tranquilla LM; Mallory M; Merkel FR; Montevecchi W; Mosbech A; Petersen A; Grémillet D Curr Biol; 2021 Sep; 31(17):3964-3971.e3. PubMed ID: 34520704 [TBL] [Abstract][Full Text] [Related]
7. Optimal body size and energy expenditure during winter: why are voles smaller in declining populations? Ergon T; Speakman JR; Scantlebury M; Cavanagh R; Lambin X Am Nat; 2004 Mar; 163(3):442-57. PubMed ID: 15026979 [TBL] [Abstract][Full Text] [Related]
8. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Masden EA; Haydon DT; Fox AD; Furness RW Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382 [TBL] [Abstract][Full Text] [Related]
9. Impacts of extreme climatic events on the energetics of long-lived vertebrates: the case of the greater flamingo facing cold spells in the Camargue. Deville AS; Labaude S; Robin JP; Béchet A; Gauthier-Clerc M; Porter W; Fitzpatrick M; Mathewson P; Grémillet D J Exp Biol; 2014 Oct; 217(Pt 20):3700-7. PubMed ID: 25320270 [TBL] [Abstract][Full Text] [Related]
10. Climate-mediated energetic constraints on the distribution of hibernating mammals. Humphries MM; Thomas DW; Speakman JR Nature; 2002 Jul; 418(6895):313-6. PubMed ID: 12124621 [TBL] [Abstract][Full Text] [Related]
11. Recruitment and survival of immature seabirds in relation to oil spills and climate variability. Votier SC; Birkhead TR; Oro D; Trinder M; Grantham MJ; Clark JA; McCleery RH; Hatchwell BJ J Anim Ecol; 2008 Sep; 77(5):974-83. PubMed ID: 18624739 [TBL] [Abstract][Full Text] [Related]
12. Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change. Amélineau F; Fort J; Mathewson PD; Speirs DC; Courbin N; Perret S; Porter WP; Wilson RJ; Grémillet D R Soc Open Sci; 2018 Jan; 5(1):171883. PubMed ID: 29410875 [TBL] [Abstract][Full Text] [Related]
13. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives. Niizuma Y; Gabrielsen GW; Sato K; Watanuki Y; Naito Y Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):438-44. PubMed ID: 17321772 [TBL] [Abstract][Full Text] [Related]
14. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. Woo KJ; Elliott KH; Davidson M; Gaston AJ; Davoren GK J Anim Ecol; 2008 Nov; 77(6):1082-91. PubMed ID: 18624834 [TBL] [Abstract][Full Text] [Related]
16. Contrasting effects of climatic variability on the demography of a trans-equatorial migratory seabird. Genovart M; Sanz-Aguilar A; Fernández-Chacón A; Igual JM; Pradel R; Forero MG; Oro D J Anim Ecol; 2013 Jan; 82(1):121-30. PubMed ID: 22823099 [TBL] [Abstract][Full Text] [Related]
17. The long summer: pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary bee. Sgolastra F; Kemp WP; Buckner JS; Pitts-Singer TL; Maini S; Bosch J J Insect Physiol; 2011 Dec; 57(12):1651-9. PubMed ID: 21910996 [TBL] [Abstract][Full Text] [Related]
18. Lagged effects of ocean climate change on fulmar population dynamics. Thompson PM; Ollason JC Nature; 2001 Sep; 413(6854):417-20. PubMed ID: 11574887 [TBL] [Abstract][Full Text] [Related]
19. Biologging, remotely-sensed oceanography and the continuous plankton recorder reveal the environmental determinants of a seabird wintering hotspot. Fort J; Beaugrand G; Grémillet D; Phillips RA PLoS One; 2012; 7(7):e41194. PubMed ID: 22815967 [TBL] [Abstract][Full Text] [Related]
20. Helminths of Murres (Alcidae: Uria spp.): markers of ecological change in the marine environment. Muzaffar SB J Wildl Dis; 2009 Jul; 45(3):672-83. PubMed ID: 19617477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]