These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19617443)

  • 1. A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar aponeurosis.
    Caravaggi P; Pataky T; Goulermas JY; Savage R; Crompton R
    J Exp Biol; 2009 Aug; 212(Pt 15):2491-9. PubMed ID: 19617443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of longitudinal arch support in relation to walking speed: contribution of the plantar aponeurosis.
    Caravaggi P; Pataky T; Günther M; Savage R; Crompton R
    J Anat; 2010 Sep; 217(3):254-61. PubMed ID: 20646107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in length of the plantar aponeurosis during the stance phase of gait--an in vivo dynamic fluoroscopic study.
    Fessel G; Jacob HA; Wyss Ch; Mittlmeier T; Müller-Gerbl M; Büttner A
    Ann Anat; 2014 Dec; 196(6):471-8. PubMed ID: 25113063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic loading of the plantar aponeurosis in walking.
    Erdemir A; Hamel AJ; Fauth AR; Piazza SJ; Sharkey NA
    J Bone Joint Surg Am; 2004 Mar; 86(3):546-52. PubMed ID: 14996881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of plantar fascia during walking: a quasi-static simulation.
    Chen YN; Chang CW; Li CT; Chang CH; Lin CF
    Foot Ankle Int; 2015 Jan; 36(1):90-7. PubMed ID: 25189539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear finite element analysis of the plantar fascia due to the windlass mechanism.
    Cheng HY; Lin CL; Chou SW; Wang HW
    Foot Ankle Int; 2008 Aug; 29(8):845-51. PubMed ID: 18752786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism.
    Farris DJ; Birch J; Kelly L
    J R Soc Interface; 2020 Jul; 17(168):20200208. PubMed ID: 32674708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking.
    Scott SH; Winter DA
    J Biomech; 1993 Sep; 26(9):1091-1104. PubMed ID: 8408091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of walking with poles on the distribution of plantar pressures in normal subjects.
    Hudson D
    PM R; 2014 Feb; 6(2):146-51. PubMed ID: 24041585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.
    Van den Herrewegen I; Cuppens K; Broeckx M; Barisch-Fritz B; Vander Sloten J; Leardini A; Peeraer L
    J Biomech; 2014 Aug; 47(11):2531-9. PubMed ID: 24998032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait kinematics of subjects with ankle instability using a multisegmented foot model.
    De Ridder R; Willems T; Vanrenterghem J; Robinson M; Pataky T; Roosen P
    Med Sci Sports Exerc; 2013 Nov; 45(11):2129-36. PubMed ID: 23657166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in windlass effect in response to different shoe and insole designs during walking.
    Lin SC; Chen CP; Tang SF; Wong AM; Hsieh JH; Chen WP
    Gait Posture; 2013 Feb; 37(2):235-41. PubMed ID: 22884544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foot Motion Character During Forward and Backward Walking With Shoes and Barefoot.
    Sun D; Fekete G; Baker JS; Gu Y
    J Mot Behav; 2020; 52(2):214-225. PubMed ID: 31023152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force in the achilles tendon during walking with ankle foot orthosis.
    Fröberg A; Komi P; Ishikawa M; Movin T; Arndt A
    Am J Sports Med; 2009 Jun; 37(6):1200-7. PubMed ID: 19229043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic energy within the human plantar aponeurosis contributes to arch shortening during the push-off phase of running.
    Wager JC; Challis JH
    J Biomech; 2016 Mar; 49(5):704-709. PubMed ID: 26944691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
    Chang R; Rodrigues PA; Van Emmerik RE; Hamill J
    J Biomech; 2014 Aug; 47(11):2571-7. PubMed ID: 24992816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal foot function in diabetic patients: the altered onset of Windlass mechanism.
    D'Ambrogi E; Giacomozzi C; Macellari V; Uccioli L
    Diabet Med; 2005 Dec; 22(12):1713-9. PubMed ID: 16401317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rise of the longitudinal arch when sitting, standing, and walking: Contributions of the windlass mechanism.
    Sichting F; Ebrecht F
    PLoS One; 2021; 16(4):e0249965. PubMed ID: 33831112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis.
    Yarnitzky G; Yizhar Z; Gefen A
    J Biomech; 2006; 39(14):2673-89. PubMed ID: 16212969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.