These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19617571)

  • 1. A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp.
    Heltzel JM; Maul RW; Scouten Ponticelli SK; Sutton MD
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12664-9. PubMed ID: 19617571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single hydrophobic cleft in the Escherichia coli processivity clamp is sufficient to support cell viability and DNA damage-induced mutagenesis in vivo.
    Sutton MD; Duzen JM; Scouten Ponticelli SK
    BMC Mol Biol; 2010 Dec; 11():102. PubMed ID: 21190558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase.
    Heltzel JM; Maul RW; Wolff DW; Sutton MD
    J Bacteriol; 2012 Jul; 194(14):3589-600. PubMed ID: 22544274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis.
    Scotland MK; Heltzel JM; Kath JE; Choi JS; Berdis AJ; Loparo JJ; Sutton MD
    PLoS Genet; 2015 Sep; 11(9):e1005507. PubMed ID: 26352807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp.
    Furukohri A; Goodman MF; Maki H
    J Biol Chem; 2008 Apr; 283(17):11260-9. PubMed ID: 18308729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutant forms of the Escherichia colibeta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis.
    Sutton MD; Duzen JM; Maul RW
    Mol Microbiol; 2005 Mar; 55(6):1751-66. PubMed ID: 15752198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously.
    Indiani C; McInerney P; Georgescu R; Goodman MF; O'Donnell M
    Mol Cell; 2005 Sep; 19(6):805-15. PubMed ID: 16168375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mutant β
    Homiski C; Scotland MK; Babu VMP; Chodavarapu S; Maul RW; Kaguni JM; Sutton MD
    J Bacteriol; 2021 Nov; 203(23):e0030321. PubMed ID: 34543108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
    Sutton MD
    J Bacteriol; 2004 Oct; 186(20):6738-48. PubMed ID: 15466025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli.
    Heltzel JM; Scouten Ponticelli SK; Sanders LH; Duzen JM; Cody V; Pace J; Snell EH; Sutton MD
    J Mol Biol; 2009 Mar; 387(1):74-91. PubMed ID: 19361435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp.
    Maul RW; Ponticelli SK; Duzen JM; Sutton MD
    Mol Microbiol; 2007 Aug; 65(3):811-27. PubMed ID: 17635192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling.
    Scouten Ponticelli SK; Duzen JM; Sutton MD
    Nucleic Acids Res; 2009 May; 37(9):2796-809. PubMed ID: 19279187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp.
    Le TT; Furukohri A; Tatsumi-Akiyama M; Maki H
    Sci Rep; 2017 Oct; 7(1):12755. PubMed ID: 29038530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases.
    Burnouf DY; Olieric V; Wagner J; Fujii S; Reinbolt J; Fuchs RP; Dumas P
    J Mol Biol; 2004 Jan; 335(5):1187-97. PubMed ID: 14729336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair.
    Toste Rêgo A; Holding AN; Kent H; Lamers MH
    EMBO J; 2013 May; 32(9):1334-43. PubMed ID: 23549287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange between Escherichia coli polymerases II and III on a processivity clamp.
    Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ
    Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli.
    Sutton MD; Duzen JM
    DNA Repair (Amst); 2006 Mar; 5(3):312-23. PubMed ID: 16338175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells.
    Hastings PJ; Hersh MN; Thornton PC; Fonville NC; Slack A; Frisch RL; Ray MP; Harris RS; Leal SM; Rosenberg SM
    PLoS One; 2010 May; 5(5):e10862. PubMed ID: 20523737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of specific amino acid residues in the E. coli beta processivity clamp involved in interactions with DNA polymerase III, UmuD and UmuD'.
    Duzen JM; Walker GC; Sutton MD
    DNA Repair (Amst); 2004 Mar; 3(3):301-12. PubMed ID: 15177045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis.
    Kath JE; Jergic S; Heltzel JM; Jacob DT; Dixon NE; Sutton MD; Walker GC; Loparo JJ
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7647-52. PubMed ID: 24825884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.