These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 19618013)
1. The contour of cementless femoral stem has minor effect on initial periprosthetic von Mises stress distribution. A 3-dimensional finite element analysis. Hu KZ; Zhang XL; Wang CT; Ji WT Saudi Med J; 2009 Jul; 30(7):947-51. PubMed ID: 19618013 [TBL] [Abstract][Full Text] [Related]
2. Periprosthetic fractures may be more likely in cementless femoral stems with sharp edges. Hu K; Zhang X; Zhu J; Wang C; Ji W; Bai X Ir J Med Sci; 2010 Sep; 179(3):417-21. PubMed ID: 19847592 [TBL] [Abstract][Full Text] [Related]
3. Assessments of different kinds of stems by experiments and FEM analysis: appropriate stress distribution on a hip prosthesis. Sakai R; Itoman M; Mabuchi K Clin Biomech (Bristol); 2006 Oct; 21(8):826-33. PubMed ID: 16701927 [TBL] [Abstract][Full Text] [Related]
4. [Stress analysis of femoral stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer]. Oomori H; Imura S; Gesso H Nihon Seikeigeka Gakkai Zasshi; 1992 Apr; 66(4):240-52. PubMed ID: 1593196 [TBL] [Abstract][Full Text] [Related]
5. [Finite element analysis of changes in femoral stresses after elite total hip arthroplasty]. He RX; Luo YM; Yan SG; Wu HB Zhonghua Yi Xue Za Zhi; 2004 Sep; 84(18):1549-53. PubMed ID: 15500718 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Early Postoperative Stress Distribution around Short and Tapered Wedge Stems in Femurs with Different Femoral Marrow Cavity Geometries Using Finite Element Analysis. Hosoyama T; Kaku N; Pramudita JA; Shibuta Y Clin Orthop Surg; 2024 Oct; 16(5):724-732. PubMed ID: 39364098 [TBL] [Abstract][Full Text] [Related]
7. Cementless implant composition and femoral stress. A finite element analysis. Namba RS; Keyak JH; Kim AS; Vu LP; Skinner HB Clin Orthop Relat Res; 1998 Feb; (347):261-7. PubMed ID: 9520899 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the fixation stiffness of some femoral stems of different designs. Sakai R; Kanai N; Itoman M; Mabuchi K Clin Biomech (Bristol); 2006 May; 21(4):370-8. PubMed ID: 16431001 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Kong L; Hu K; Li D; Song Y; Yang J; Wu Z; Liu B Int J Oral Maxillofac Implants; 2008; 23(1):65-74. PubMed ID: 18416414 [TBL] [Abstract][Full Text] [Related]
10. Bivariate evaluation of cylinder implant diameter and length: a three-dimensional finite element analysis. Kong L; Sun Y; Hu K; Li D; Hou R; Yang J; Liu B J Prosthodont; 2008 Jun; 17(4):286-93. PubMed ID: 18205741 [TBL] [Abstract][Full Text] [Related]
11. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372 [TBL] [Abstract][Full Text] [Related]
13. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components]. Kovanda M; HavlĂcek V; Hudec J Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130 [TBL] [Abstract][Full Text] [Related]
14. Effect of FE idealisation, load conditions and interface assumptions on the stress distribution and fatigue notch factor in the human femur with an endoprosthesis. Hedia HS; Barton DC; Fisher J; Elmidany TT Biomed Mater Eng; 1996; 6(3):135-52. PubMed ID: 8922259 [TBL] [Abstract][Full Text] [Related]
15. Re-creation of a sinuslike graft expansion in Bentall procedure reduces stress at the coronary button anastomoses: A finite element study. Weltert L; De Paulis R; Scaffa R; Maselli D; Bellisario A; D'Alessandro S J Thorac Cardiovasc Surg; 2009 May; 137(5):1082-7. PubMed ID: 19379971 [TBL] [Abstract][Full Text] [Related]
16. [Establishment of the three-dimensional finite element model of the first permanent mandibular molar and its stress analysis]. Zeng Y; Wang JD Zhonghua Kou Qiang Yi Xue Za Zhi; 2005 Sep; 40(5):394-7. PubMed ID: 16255925 [TBL] [Abstract][Full Text] [Related]
17. Analysis of biomechanical effect of stem-end design in revision TKA using Digital Korean model. Kim YH; Kwon OS; Kim K Clin Biomech (Bristol); 2008 Aug; 23(7):853-8. PubMed ID: 18321621 [TBL] [Abstract][Full Text] [Related]
18. The effect of necrotic lesion size and rotational degree on the stress reduction in transtrochanteric rotational osteotomy for femoral head osteonecrosis--a three-dimensional finite-element simulation. Lee MS; Tai CL; Senan V; Shih CH; Lo SW; Chen WP Clin Biomech (Bristol); 2006 Nov; 21(9):969-76. PubMed ID: 16806615 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional structural optimization of a cementless hip stem using a bi-directional evolutionary method. Rahchamani R; Soheilifard R Comput Methods Biomech Biomed Engin; 2020 Jan; 23(1):1-11. PubMed ID: 31565967 [TBL] [Abstract][Full Text] [Related]
20. [Three-dimensional finite element analysis of the stress of mandibular incisor with different level of alveolar bone]. Shang S; Li C; Qian Q; Liang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):725-9. PubMed ID: 16156259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]