These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 19618186)
21. Rewriting the tip apex distance for the proximal femoral nail anti-rotation. Yam M; Chawla A; Kwek E Injury; 2017 Aug; 48(8):1843-1847. PubMed ID: 28689807 [TBL] [Abstract][Full Text] [Related]
22. Anterior Malreduction is Associated With Lag Screw Cutout After Internal Fixation of Intertrochanteric Fractures. Inui T; Watanabe Y; Suzuki T; Matsui K; Kurata Y; Ishii K; Kurozumi T; Kawano H Clin Orthop Relat Res; 2024 Mar; 482(3):536-545. PubMed ID: 37732692 [TBL] [Abstract][Full Text] [Related]
23. Late postoperative analysis of the tip-apex distance (TAD) in pertrochanteric fractures: is there an accommodation of the implant within the bone? Aihara LJ; Nanni RA; Carvalho MS; Zamboni C; Durigan JR; Hungria Neto JS; Mercadante MT; Christian RW; Hungria JOS Injury; 2017 Oct; 48 Suppl 4():S54-S56. PubMed ID: 29145969 [TBL] [Abstract][Full Text] [Related]
24. Prediction of fixation failure after sliding hip screw fixation. Pervez H; Parker MJ; Vowler S Injury; 2004 Oct; 35(10):994-8. PubMed ID: 15351665 [TBL] [Abstract][Full Text] [Related]
25. Optimising the tip-apex-distance in trochanteric femoral fracture fixation using the ADAPT-navigated technique, a longitudinal matched cohort study. Herzog J; Wendlandt R; Hillbricht S; Burgkart R; Schulz AP Injury; 2019 Mar; 50(3):744-751. PubMed ID: 30782395 [TBL] [Abstract][Full Text] [Related]
26. No difference between lag screw and helical blade for cephalomedullary nail cut-out a systematic review and meta-analysis. Ng M; Shah NS; Golub I; Ciminero M; Zhai K; Kang KK; Emara AK; Piuzzi NS Eur J Orthop Surg Traumatol; 2022 Dec; 32(8):1617-1625. PubMed ID: 34665292 [TBL] [Abstract][Full Text] [Related]
27. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Kashigar A; Vincent A; Gunton MJ; Backstein D; Safir O; Kuzyk PR Bone Joint J; 2014 Aug; 96-B(8):1029-34. PubMed ID: 25086117 [TBL] [Abstract][Full Text] [Related]
28. The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw: a subject-specific finite element study. Goffin JM; Pankaj P; Simpson AH J Orthop Res; 2013 Apr; 31(4):596-600. PubMed ID: 23138576 [TBL] [Abstract][Full Text] [Related]
29. Causes and treatments of lag screw's cut out after intramedullary nailing osteosinthesis for trochanteric fractures. Gazzotti G; Matino G; Tsatsis C; Sacchetti G; Baudi P; Catani F Acta Biomed; 2014 Aug; 85(2):135-43. PubMed ID: 25245649 [TBL] [Abstract][Full Text] [Related]
30. Comparison of compression hip screw and gamma nail for treatment of peritrochanteric fractures. Bess RJ; Jolly SA J South Orthop Assoc; 1997; 6(3):173-9. PubMed ID: 9322196 [TBL] [Abstract][Full Text] [Related]
31. The treatment of reverse obliquity intertrochanteric fractures with the intramedullary hip nail. Park SY; Yang KH; Yoo JH; Yoon HK; Park HW J Trauma; 2008 Oct; 65(4):852-7. PubMed ID: 18849802 [TBL] [Abstract][Full Text] [Related]
32. Cephalomedullary nail versus sliding hip screw for unstable intertrochanteric fractures in elderly patients. Chua IT; Rajamoney GN; Kwek EB J Orthop Surg (Hong Kong); 2013 Dec; 21(3):308-12. PubMed ID: 24366790 [TBL] [Abstract][Full Text] [Related]
33. Computer-assisted navigation for intramedullary nail fixation of intertrochanteric femur fractures: A randomized, controlled trial. Lilly RJ; Koueiter DM; Graner KC; Nowinski GP; Sadowski J; Grant KD Injury; 2018 Feb; 49(2):345-350. PubMed ID: 29229219 [TBL] [Abstract][Full Text] [Related]
34. 130- versus 135-degree sliding hip screws and failure in pertrochanteric hip fractures. Radic R; Yates PJ; Lim TS; Burrows S ANZ J Surg; 2014 Dec; 84(12):949-54. PubMed ID: 24898151 [TBL] [Abstract][Full Text] [Related]
35. Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur. Adams CI; Robinson CM; Court-Brown CM; McQueen MM J Orthop Trauma; 2001 Aug; 15(6):394-400. PubMed ID: 11514765 [TBL] [Abstract][Full Text] [Related]
36. Influence of the PFNA screw position on the risk of cut-out in an unstable intertrochanteric fracture: a computational analysis. Quental C; Vasconcelos S; Folgado J; Guerra-Pinto F Med Eng Phys; 2021 Nov; 97():70-76. PubMed ID: 34756340 [TBL] [Abstract][Full Text] [Related]
37. Enhanced cephalomedullary nail lag screw placement and intraoperative tip-apex distance measurement with a novel computer assisted surgery system. Kuhl M; Beimel C Injury; 2016 Oct; 47(10):2155-2160. PubMed ID: 27469401 [TBL] [Abstract][Full Text] [Related]
38. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Hsueh KK; Fang CK; Chen CM; Su YP; Wu HF; Chiu FY Int Orthop; 2010 Dec; 34(8):1273-6. PubMed ID: 19784649 [TBL] [Abstract][Full Text] [Related]
39. Impact of tip-apex distance and femoral head lag screw position on treatment outcomes of unstable intertrochanteric fractures using cephalomedullary nails. Lee CH; Su KC; Chen KH; Pan CC; Wu YC J Int Med Res; 2018 Jun; 46(6):2128-2140. PubMed ID: 29848122 [TBL] [Abstract][Full Text] [Related]
40. Augmentation of intramedullary nailing in unstable intertrochanteric fractures using cerclage wire and lag screws: a comparative study. Kulkarni SG; Babhulkar SS; Kulkarni SM; Kulkarni GS; Kulkarni MS; Patil R Injury; 2017 Aug; 48 Suppl 2():S18-S22. PubMed ID: 28802415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]