BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19618269)

  • 21. Oxidative stress status of Turkish welders.
    Tokaç D; Anlar HG; Bacanlı M; Dilsiz SA; İritaş S; Başaran N
    Toxicol Ind Health; 2020 Apr; 36(4):263-271. PubMed ID: 32419654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Occupational Silica Exposure on OXIDATIVE Stress and Immune System Parameters in Ceramic Workers in TURKEY.
    Anlar HG; Bacanli M; İritaş S; Bal C; Kurt T; Tutkun E; Hinc Yilmaz O; Basaran N
    J Toxicol Environ Health A; 2017; 80(13-15):688-696. PubMed ID: 28524802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative stress modulation by Rosmarinus officinalis in creosote-induced hepatotoxicity.
    El-Demerdash FM; Abbady EA; Baghdadi HH
    Environ Toxicol; 2016 Jan; 31(1):85-92. PubMed ID: 25044495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal biomonitoring using fractioned dust to investigate urinary and oxidative stress biomarkers among occupationally exposed chromite mine workers.
    Khan C; Rehman MYA; Malik RN
    Environ Sci Pollut Res Int; 2022 May; 29(21):31164-31179. PubMed ID: 35006571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A retrospective mortality study of workers exposed to radon in a Brazilian underground coal mine.
    Veiga LH; Amaral EC; Colin D; Koifman S
    Radiat Environ Biophys; 2006 Jul; 45(2):125-34. PubMed ID: 16715323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased occupational coal dust toxicity in blood of central heating system workers.
    Tuluce Y; Ozkol H; Koyuncu I; Ine H
    Toxicol Ind Health; 2011 Feb; 27(1):57-64. PubMed ID: 20724314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of occupational exposures to respirable dust in underground coal mines.
    Onder M; Onder S
    Ind Health; 2009 Jan; 47(1):43-9. PubMed ID: 19218756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.
    Scheepers PT; Micka V; Muzyka V; Anzion R; Dahmann D; Poole J; Bos RP
    Ann Occup Hyg; 2003 Jul; 47(5):379-88. PubMed ID: 12855488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy-metal content and oxidative damage in Hypsiboas faber: the impact of coal-mining pollutants on amphibians.
    Zocche JJ; da Silva LA; Damiani AP; Mendonça RÁ; Peres PB; dos Santos CE; Debastiani R; Dias JF; de Andrade VM; Pinho RA
    Arch Environ Contam Toxicol; 2014 Jan; 66(1):69-77. PubMed ID: 23974155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative DNA damage and oxidative stress in lead-exposed workers.
    Dobrakowski M; Pawlas N; Kasperczyk A; Kozłowska A; Olewińska E; Machoń-Grecka A; Kasperczyk S
    Hum Exp Toxicol; 2017 Jul; 36(7):744-754. PubMed ID: 27596070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats.
    Rajeswary S; Kumaran B; Ilangovan R; Yuvaraj S; Sridhar M; Venkataraman P; Srinivasan N; Aruldhas MM
    Reprod Toxicol; 2007; 24(3-4):371-80. PubMed ID: 17485193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of occupational exposure to diesel exhaust on porphyrin metabolism in lymphocytes of workers employed at black coal and oil-shale mines.
    Muzyka V; Bogovski S; Scheepers P; Volf J; Kusova J
    Am J Ind Med; 2003 Jul; 44(1):70-4. PubMed ID: 12822138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physico-chemical properties and reactive oxygen species generation by respirable coal dust: Implication for human health risk assessment.
    Zazouli MA; Dehbandi R; Mohammadyan M; Aarabi M; Dominguez AO; Kelly FJ; Khodabakhshloo N; Rahman MM; Naidu R
    J Hazard Mater; 2021 Mar; 405():124185. PubMed ID: 33189473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant response at early stages and low grades of simple coal worker's pneumoconiosis diagnosed by high resolution computed tomography.
    Altin R; Armutcu F; Kart L; Gurel A; Savranlar A; Ozdemir H
    Int J Hyg Environ Health; 2004 Oct; 207(5):455-62. PubMed ID: 15575561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association between duration of coal dust exposure and respiratory impairment in coal miners of West Bengal, India.
    Prasad SK; Singh S; Bose A; Prasad B; Banerjee O; Bhattacharjee A; Maji BK; Samanta A; Mukherjee S
    Int J Occup Saf Ergon; 2021 Sep; 27(3):794-804. PubMed ID: 32172683
    [No Abstract]   [Full Text] [Related]  

  • 36. Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal.
    Rohr P; Kvitko K; da Silva FR; Menezes AP; Porto C; Sarmento M; Decker N; Reyes JM; Allgayer Mda C; Furtado TC; Salvador M; Branco C; da Silva J
    Mutat Res Genet Toxicol Environ Mutagen; 2013 Dec; 758(1-2):23-8. PubMed ID: 24004879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutathione level after long-term occupational elemental mercury exposure.
    Kobal AB; Prezelj M; Horvat M; Krsnik M; Gibicar D; Osredkar J
    Environ Res; 2008 May; 107(1):115-23. PubMed ID: 17706633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The genotoxic risk of underground coal miners from Turkey.
    Donbak L; Rencuzogullari E; Yavuz A; Topaktas M
    Mutat Res; 2005 Dec; 588(2):82-7. PubMed ID: 16337427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of dust levels in different areas of underground coal mines.
    Onder M; Onder S; Akdag T; Ozgun F
    Int J Occup Saf Ergon; 2009; 15(1):125-30. PubMed ID: 19272246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High prevalence of respiratory symptoms among workers in the development section of a manually operated coal mine in a developing country: a cross sectional study.
    Mamuya SH; Bråtveit M; Mashalla Y; Moen BE
    BMC Public Health; 2007 Feb; 7():17. PubMed ID: 17270039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.