These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 196184)

  • 1. Influence of cyclic 3',5'-adenosine monophosphate on uracil uptake by rifampicin treated Escherichia coli cells.
    Judewicz ND; Torres HN
    Mol Cell Biochem; 1977 Jul; 16(2):135-9. PubMed ID: 196184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of uracil uptake in Escherichia coli by adenosine 3',5'-monophosphate.
    De Robertis EM; Judewicz ND; Torres HN
    Biochim Biophys Acta; 1976 Mar; 426(3):451-63. PubMed ID: 178363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of uracil transport by cyclic AMP in E. coli.
    Judewicz ND; De Robertis EM; Torres HN
    FEBS Lett; 1974 Sep; 45(1):155-8. PubMed ID: 4369888
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of RNA synthesis in Escherichia coli. I. Characterization of cells subjected to simultaneous temperature and osmotic shock.
    Raué HA; Cashel M
    Biochim Biophys Acta; 1973 Jul; 312(4):722-36. PubMed ID: 4354877
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of maltodextrin phosphorylase synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate and glucose.
    Chao J; Weathersbee CJ
    J Bacteriol; 1974 Jan; 117(1):181-8. PubMed ID: 4358043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 5S ribosomal RNA in Escherichia coli after rifampicin treatment.
    Doolittle WF; Pace NR
    Nature; 1970 Oct; 228(5267):125-9. PubMed ID: 4918254
    [No Abstract]   [Full Text] [Related]  

  • 7. The control of ribonucleic acid synthesis in bacteria. The synthesis and stbility of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1971 Apr; 122(2):161-9. PubMed ID: 4940607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication of colicinogenic factor E1 DNA in plasmolysed Escherichia coli cells. Coupling of DNA replication and RNA synthesis.
    Staudenbauer WL
    Eur J Biochem; 1975 Oct; 58(2):303-13. PubMed ID: 171157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between bactericidal effect and inhibition of ribonucleic acid nucleotidyltransferase by rifampicin in Escherichia coli K-12.
    Lancini G; Pallanza R; Silvestri LG
    J Bacteriol; 1969 Feb; 97(2):761-8. PubMed ID: 4886292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A messenger RNA from the lactose operon of Escherichia coli that can not direct the production of functional -galactosidase in absence of exogenous adenosine 3',5-cyclic monophosphate.
    Simon M; Apirion D
    Genetics; 1972 May; 71(1):1-18. PubMed ID: 4338629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay of ribonucleic acid synthesis in amino acid-starved Escherichia coli after rifampin treatment.
    Rogerson AC; Ezekiel DH
    J Bacteriol; 1974 Mar; 117(3):987-93. PubMed ID: 4591964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ineffectiveness of rifampicin in inhibiting RNA synthesis in Escherichia coli and T(4)-infected Escherichia coli cells after exposure to ultraviolet radiation.
    Prakash RK; Netrawali MS; Pradhan DS; Screenivasan A
    Biochim Biophys Acta; 1975 Apr; 383(4):435-40. PubMed ID: 1092353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine triphosphate and catabolite repression of -galactosidase in escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1971 Oct; 45(1):190-7. PubMed ID: 4334523
    [No Abstract]   [Full Text] [Related]  

  • 14. [Escherichia coli K12 mutant with increased RNA content and messenger RNA stability].
    Liebart JC; Marcovich H
    Biochimie; 1976; 58(1-2):233-8. PubMed ID: 782559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ATP pool in Escherichia coli K 12 strains bearing the R1 plasmid.
    Braná H; Hubácek J; König J
    Folia Microbiol (Praha); 1973; 18(3):263-5. PubMed ID: 4353097
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of R factors on rifampicin resistance in E. coli.
    Romero E; Riva S; Fietta AM; Silvestri LG
    Nat New Biol; 1971 Nov; 234(45):56-8. PubMed ID: 4942897
    [No Abstract]   [Full Text] [Related]  

  • 17. Nucleic acid synthesis and nucleotide pools in purine-deficient Escherichia coli.
    Thomas GA; Varney NF; Burton K
    Biochem J; 1970 Nov; 120(1):117-24. PubMed ID: 4395452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of adenosine-3',5'-cyclic monophosphate for L-arabinose isomerase synthesis in Escherichia coli.
    Nakazawa T; Yokota T
    J Bacteriol; 1973 Mar; 113(3):1412-8. PubMed ID: 4347972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cyclic adenosine 3',5'-monophosphate and the cyclic adenosine 3',5'-monophosphate receptor protein in the initiation of lac transcription.
    De Crombrugghe E; Chen B; Anderson WB; Gottesman ME; Perlman RL; Pastan I
    J Biol Chem; 1971 Dec; 246(23):7343-8. PubMed ID: 4333322
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the in vitro transcription and translation of the lac operon.
    Kung HF; Brot N; Spears C; Chen B; Weissbach H
    Arch Biochem Biophys; 1974 Jan; 160(1):168-74. PubMed ID: 4364063
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.