BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 196184)

  • 1. Influence of cyclic 3',5'-adenosine monophosphate on uracil uptake by rifampicin treated Escherichia coli cells.
    Judewicz ND; Torres HN
    Mol Cell Biochem; 1977 Jul; 16(2):135-9. PubMed ID: 196184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of uracil uptake in Escherichia coli by adenosine 3',5'-monophosphate.
    De Robertis EM; Judewicz ND; Torres HN
    Biochim Biophys Acta; 1976 Mar; 426(3):451-63. PubMed ID: 178363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of uracil transport by cyclic AMP in E. coli.
    Judewicz ND; De Robertis EM; Torres HN
    FEBS Lett; 1974 Sep; 45(1):155-8. PubMed ID: 4369888
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of RNA synthesis in Escherichia coli. I. Characterization of cells subjected to simultaneous temperature and osmotic shock.
    Raué HA; Cashel M
    Biochim Biophys Acta; 1973 Jul; 312(4):722-36. PubMed ID: 4354877
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of maltodextrin phosphorylase synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate and glucose.
    Chao J; Weathersbee CJ
    J Bacteriol; 1974 Jan; 117(1):181-8. PubMed ID: 4358043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 5S ribosomal RNA in Escherichia coli after rifampicin treatment.
    Doolittle WF; Pace NR
    Nature; 1970 Oct; 228(5267):125-9. PubMed ID: 4918254
    [No Abstract]   [Full Text] [Related]  

  • 7. The control of ribonucleic acid synthesis in bacteria. The synthesis and stbility of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1971 Apr; 122(2):161-9. PubMed ID: 4940607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication of colicinogenic factor E1 DNA in plasmolysed Escherichia coli cells. Coupling of DNA replication and RNA synthesis.
    Staudenbauer WL
    Eur J Biochem; 1975 Oct; 58(2):303-13. PubMed ID: 171157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between bactericidal effect and inhibition of ribonucleic acid nucleotidyltransferase by rifampicin in Escherichia coli K-12.
    Lancini G; Pallanza R; Silvestri LG
    J Bacteriol; 1969 Feb; 97(2):761-8. PubMed ID: 4886292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A messenger RNA from the lactose operon of Escherichia coli that can not direct the production of functional -galactosidase in absence of exogenous adenosine 3',5-cyclic monophosphate.
    Simon M; Apirion D
    Genetics; 1972 May; 71(1):1-18. PubMed ID: 4338629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay of ribonucleic acid synthesis in amino acid-starved Escherichia coli after rifampin treatment.
    Rogerson AC; Ezekiel DH
    J Bacteriol; 1974 Mar; 117(3):987-93. PubMed ID: 4591964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ineffectiveness of rifampicin in inhibiting RNA synthesis in Escherichia coli and T(4)-infected Escherichia coli cells after exposure to ultraviolet radiation.
    Prakash RK; Netrawali MS; Pradhan DS; Screenivasan A
    Biochim Biophys Acta; 1975 Apr; 383(4):435-40. PubMed ID: 1092353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine triphosphate and catabolite repression of -galactosidase in escherichia coli.
    Aboud M; Burger M
    Biochem Biophys Res Commun; 1971 Oct; 45(1):190-7. PubMed ID: 4334523
    [No Abstract]   [Full Text] [Related]  

  • 14. [Escherichia coli K12 mutant with increased RNA content and messenger RNA stability].
    Liebart JC; Marcovich H
    Biochimie; 1976; 58(1-2):233-8. PubMed ID: 782559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ATP pool in Escherichia coli K 12 strains bearing the R1 plasmid.
    Braná H; Hubácek J; König J
    Folia Microbiol (Praha); 1973; 18(3):263-5. PubMed ID: 4353097
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of R factors on rifampicin resistance in E. coli.
    Romero E; Riva S; Fietta AM; Silvestri LG
    Nat New Biol; 1971 Nov; 234(45):56-8. PubMed ID: 4942897
    [No Abstract]   [Full Text] [Related]  

  • 17. Nucleic acid synthesis and nucleotide pools in purine-deficient Escherichia coli.
    Thomas GA; Varney NF; Burton K
    Biochem J; 1970 Nov; 120(1):117-24. PubMed ID: 4395452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of adenosine-3',5'-cyclic monophosphate for L-arabinose isomerase synthesis in Escherichia coli.
    Nakazawa T; Yokota T
    J Bacteriol; 1973 Mar; 113(3):1412-8. PubMed ID: 4347972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cyclic adenosine 3',5'-monophosphate and the cyclic adenosine 3',5'-monophosphate receptor protein in the initiation of lac transcription.
    De Crombrugghe E; Chen B; Anderson WB; Gottesman ME; Perlman RL; Pastan I
    J Biol Chem; 1971 Dec; 246(23):7343-8. PubMed ID: 4333322
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the in vitro transcription and translation of the lac operon.
    Kung HF; Brot N; Spears C; Chen B; Weissbach H
    Arch Biochem Biophys; 1974 Jan; 160(1):168-74. PubMed ID: 4364063
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.