BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

802 related articles for article (PubMed ID: 19619403)

  • 41. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
    Jwo SC; Chiu CH; Tang SJ; Hsieh MF
    Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model.
    Mirensky TL; Nelson GN; Brennan MP; Roh JD; Hibino N; Yi T; Shinoka T; Breuer CK
    J Pediatr Surg; 2009 Jun; 44(6):1127-32; discussion 1132-3. PubMed ID: 19524728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts.
    Zorlutuna P; Vadgama P; Hasirci V
    J Tissue Eng Regen Med; 2010 Dec; 4(8):628-37. PubMed ID: 20603868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanopatterning of collagen scaffolds improve the mechanical properties of tissue engineered vascular grafts.
    Zorlutuna P; Elsheikh A; Hasirci V
    Biomacromolecules; 2009 Apr; 10(4):814-21. PubMed ID: 19226102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preliminary investigation of seeding mesenchymal stem cells on biodegradable scaffolds for vascular tissue engineering in vitro.
    Li CM; Wang ZG; Gu YQ; Dong JD; Qiu RX; Bian C; Liu XF; Feng ZG
    ASAIO J; 2009; 55(6):614-9. PubMed ID: 19812476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Experimental study of tissue engineered blood vessel with vascular endothelial cell and vascular smooth muscle cell].
    Pan Y; Ai YF; Huang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jan; 17(1):65-8. PubMed ID: 12916314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro].
    Wen SJ; Zhao LM; Li P; Li JX; Liu Y; Liu JL; Chen YC
    Zhonghua Yi Xue Za Zhi; 2005 Mar; 85(12):816-8. PubMed ID: 15949397
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds.
    Shin JW; Lee YJ; Heo SJ; Park SA; Kim SH; Kim YJ; Kim DH; Shin JW
    J Biomater Sci Polym Ed; 2009; 20(5-6):757-71. PubMed ID: 19323888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering microporosity in bacterial cellulose scaffolds.
    Bäckdahl H; Esguerra M; Delbro D; Risberg B; Gatenholm P
    J Tissue Eng Regen Med; 2008 Aug; 2(6):320-30. PubMed ID: 18615821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro and in vivo analysis of co-electrospun scaffolds made of medical grade poly(epsilon-caprolactone) and porcine collagen.
    Chen ZC; Ekaputra AK; Gauthaman K; Adaikan PG; Yu H; Hutmacher DW
    J Biomater Sci Polym Ed; 2008; 19(5):693-707. PubMed ID: 18419946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential.
    Kwon IK; Kidoaki S; Matsuda T
    Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering.
    Fu W; Liu Z; Feng B; Hu R; He X; Wang H; Yin M; Huang H; Zhang H; Wang W
    Int J Nanomedicine; 2014; 9():2335-44. PubMed ID: 24872696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human vascular smooth muscle cells and endothelial cells cocultured on polyglycolic acid (70/30) scaffold in tissue engineered vascular graft.
    Wen SJ; Zhao LM; Wang SG; Li JX; Chen HY; Liu JL; Liu Y; Luo Y; Changizi R
    Chin Med J (Engl); 2007 Aug; 120(15):1331-5. PubMed ID: 17711739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder.
    Zhang Y; Lin HK; Frimberger D; Epstein RB; Kropp BP
    BJU Int; 2005 Nov; 96(7):1120-5. PubMed ID: 16225540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices.
    Venugopal J; Ma LL; Yong T; Ramakrishna S
    Cell Biol Int; 2005 Oct; 29(10):861-7. PubMed ID: 16153863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.