BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19619667)

  • 1. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering.
    Asadollahi MA; Maury J; Patil KR; Schalk M; Clark A; Nielsen J
    Metab Eng; 2009 Nov; 11(6):328-34. PubMed ID: 19619667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.
    Kim JW; Chin YW; Park YC; Seo JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):49-54. PubMed ID: 21909679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism.
    Chen Y; Daviet L; Schalk M; Siewers V; Nielsen J
    Metab Eng; 2013 Jan; 15():48-54. PubMed ID: 23164578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.
    Asadollahi MA; Maury J; Møller K; Nielsen KF; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2008 Feb; 99(3):666-77. PubMed ID: 17705244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.
    Bro C; Regenberg B; Förster J; Nielsen J
    Metab Eng; 2006 Mar; 8(2):102-11. PubMed ID: 16289778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.
    Grotkjaer T; Christakopoulos P; Nielsen J; Olsson L
    Metab Eng; 2005; 7(5-6):437-44. PubMed ID: 16140032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.
    Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J
    FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids.
    Shiba Y; Paradise EM; Kirby J; Ro DK; Keasling JD
    Metab Eng; 2007 Mar; 9(2):160-8. PubMed ID: 17196416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae.
    Trantas E; Panopoulos N; Ververidis F
    Metab Eng; 2009 Nov; 11(6):355-66. PubMed ID: 19631278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.
    Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL
    Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Iranmanesh E; Asadollahi MA; Biria D
    J Biotechnol; 2020 Jan; 308():27-34. PubMed ID: 31733223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM; Kirby J; Chan R; Keasling JD
    Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Level Production of Sesquiterpene Patchoulol in
    Liu M; Lin YC; Guo JJ; Du MM; Tao X; Gao B; Zhao M; Ma Y; Wang FQ; Wei DZ
    ACS Synth Biol; 2021 Jan; 10(1):158-172. PubMed ID: 33395273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.